Log in

Optogenetic analyses of neuronal network function and synaptic transmission in Caenorhabditis elegans

  • Review article
  • Published:
e-Neuroforum

Abstract

The transparent nematode Caenorhabditis elegans, with its anatomically well-defined nervous system comprising 302 neurons that regulate quantifiable behaviors, is an ideal model system for the development and application of optogenetic methods. Optogenetically modified neurons can be acutely excited or inhibited by light and the effects on a distinct behavior observed. Special lighting systems allow the manipulation of several nerve cells that act as “nodes” of small neural circuits, with different colors of light, so as to control different optogenetic tools independently and simultaneously. In addition, genetically encoded optical sensors for neuronal activity make it possible to draw conclusions even when the optogenetic intervention causes no obvious behavioral change. The stimulation of quantifiable behaviors permits the analysis of the function of genes necessary in the corresponding neuron for the encoding or amplification of the primary signal. Finally, following optogenetic stimulation, the function of chemical synapses and their proteins can also be analyzed by electrophysiology or electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akerboom J, Carreras Calderon N, Tian L et al (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ardiel EL, Rankin CH (2010) An elegant mind: learning and memory in Caenorhabditis elegans. Learn Mem 17:191–201

    Article  CAS  PubMed  Google Scholar 

  3. Bargmann CI (2012) Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 34:458–465

    Article  CAS  PubMed  Google Scholar 

  4. Bargmann CI, Kaplan JM (1998) Signal transduction in the Caenorhabditis elegans nervous system. Annu Rev Neurosci 21:279–308

    Article  CAS  PubMed  Google Scholar 

  5. Barr MM, Garcia LR (2006) Male mating behavior. WormBook. T. C. e. R. Community, WormBook

  6. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Cao P, Sun W, Kramp K et al (2012) Light-sensitive coupling of rhodopsin and melanopsin to G(i/o) and G(q) signal transduction in Caenorhabditis elegans. Faseb J 26:480–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chalasani SH, Chronis N, Tsunozaki M et al (2007) Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450:63–70

    Article  CAS  PubMed  Google Scholar 

  9. Cohen E, Chatzigeorgiou M, Husson SJ et al (2014) Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception. Mol Cell Neurosci 59C:85–96

    Article  Google Scholar 

  10. Erbguth K, Prigge M, Schneider F et al (2012) Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans. PLoS One 7:e46827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fagan KA, Portman DS (2014) Sexual modulation of neural circuits and behavior in Caenorhabditis elegans. Semin Cell Dev Biol 33C:3–9

    Article  Google Scholar 

  12. Flavell SW, Pokala N, Macosko EZ et al (2013) Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell 154:1023–1035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Frooninckx L, Van Rompay L, Temmerman L et al (2012) Neuropeptide GPCRs in C. elegans. Front Endocrinol (Lausanne) 3:167

    Google Scholar 

  14. Geng W, Cosman P, Baek JH et al (2003) Quantitative classification and natural clustering of Caenorhabditis elegans behavioral phenotypes. Genetics 165:1117–1126

    PubMed Central  PubMed  Google Scholar 

  15. Husson SH, Liewald JF, Schultheis C et al (2012) Microbial light-activatable proton pumps as neuronal inhibitors to functionally dissect neuronal networks in C. elegans. PLoS One 7:e40937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Husson SH, Steuer Costa W, Schmitt C, Gottschalk A (2012) Kee** track of worm trackers. O. Hobert 1–17

  17. Husson SJ, Clynen E, Boonen K et al (2010) Approaches to identify endogenous peptides in the soil nematode Caenorhabditis elegans. Methods Mol Biol 615:29–47

    Article  CAS  PubMed  Google Scholar 

  18. Husson SJ, Costa WS, Wabnig S et al (2012) Optogenetic analysis of a nociceptor neuron and network reveals ion channels acting downstream of primary sensors. Curr Biol 22:743–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Husson SJ, Gottschalk A, Leifer AM (2013) Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour. Biol Cell 105:235–250

    Article  CAS  PubMed  Google Scholar 

  20. Husson SJ, Mertens I, Janssen T et al (2007) Neuropeptidergic signaling in the nematode Caenorhabditis elegans. Prog Neurobiol 82:33–55

    Article  CAS  PubMed  Google Scholar 

  21. Jang H, Kim K, Neal SJ et al (2012) Neuromodulatory state and sex specify alternative behaviors through antagonistic synaptic pathways in C. elegans. Neuron 75:585–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kittelmann M, Liewald JF, Hegermann J et al (2013) In vivo synaptic recovery following optogenetic hyperstimulation. Proc Natl Acad Sci U S A 110:E3007–E3016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kocabas A, Shen CH, Guo ZV, Ramanathan S (2012) Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour. Nature 490:273–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Leifer AM, Fang-Yen C, Gershow M et al (2011) Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat Methods 8:147–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Liewald JF, Brauner M, Stephens GJ et al (2008) Optogenetic analysis of synaptic function. Nat Methods 5:895–902

    Article  CAS  PubMed  Google Scholar 

  26. Liu Q, Hollopeter G, Jorgensen EM (2009) Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction. Proc Natl Acad Sci U S A 106:10823–10828

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Macosko EZ, Pokala N, Feinberg EH et al (2009) A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458:1171–1175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Mertens I, Clinckspoor I, Janssen T et al (2006) FMRFamide related peptide ligands activate the Caenorhabditis elegans orphan GPCR Y59H11AL.1. Peptides 27:1291–1296

    Article  CAS  PubMed  Google Scholar 

  29. Miller KG, Alfonso A, Nguyen M et al (1996) A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc Natl Acad Sci U S A 93:12593–12598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Nagel G, Brauner M, Liewald JF et al (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Article  CAS  PubMed  Google Scholar 

  31. Nelson MD, Raizen DM (2013) A sleep state during C. elegans development. Curr Opin Neurobiol 23:824–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ohno H, Kato S, Naito Y et al (2014) Role of synaptic phosphatidylinositol 3-kinase in a behavioral learning response in C. elegans. Science 345:313–317

    Article  CAS  PubMed  Google Scholar 

  33. Prevedel R, Yoon YG, Hoffmann M et al (2014) Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat Methods 11:727–730

    Article  CAS  PubMed  Google Scholar 

  34. Sasakura H, Mori I (2013) Behavioral plasticity, learning, and memory in C. elegans. Curr Opin Neurobiol 23:92–99

    Article  CAS  PubMed  Google Scholar 

  35. Schmitt C, Schultheis C, Pokala N et al (2012) Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans. PLoS One 7:e43164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Schrodel T, Prevedel R, Aumayr K et al (2013) Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat Methods 10:1013–1020

    Article  PubMed  Google Scholar 

  37. Schultheis C, Brauner M, Liewald JF, Gottschalk A (2011) Optogenetic analysis of GABAB receptor signaling in Caenorhabditis elegans motor neurons. J Neurophysiol 106:817–827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Schultheis C, Liewald JF, Bamberg E et al (2011) Optogenetic long-term manipulation of behavior and animal development. PLoS One 6:e18766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sengupta P, Samuel AD (2009) Caenorhabditis elegans: a model system for systems neuroscience. Curr Opin Neurobiol 19:637–643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Shipley FB, Clark CM, Alkema MJ, Leifer AM (2014) Simultaneous optogenetic manipulation and calcium imaging in freely moving C. elegans. Front Neural Circuits 8:28

    Article  PubMed Central  PubMed  Google Scholar 

  41. Smith Cody J, O Brien T, Chatzigeorgiou M et al (2013) Sensory neuron fates are distinguished by a transcriptional switch that regulates dendrite branch stabilization. Neuron 79:266–280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Stephens GJ, Bueno de Mesquita M, Ryu WS, Bialek W (2011) Emergence of long timescales and stereotyped behaviors in Caenorhabditis elegans. Proc Natl Acad Sci U S A 108:7286–7289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS (2008) Dimensionality and dynamics in the behavior of C. elegans. PLoS Comput Biol 4:e1000028

    Article  PubMed Central  PubMed  Google Scholar 

  44. Stephens GJ, Osborne LC, Bialek W (2011) Searching for simplicity in the analysis of neurons and behavior. Proc Natl Acad Sci U S A 108(Suppl 3):15565–15571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Stirman JN, Crane MM, Husson SJ et al (2012) A multispectral optical illumination system with precise spatiotemporal control for the manipulation of optogenetic reagents. Nat Protoc 7:207–220

    Article  CAS  PubMed  Google Scholar 

  46. Stirman JN, Crane MM, Husson SJ et al (2011) Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nat Methods 8:153–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Von Stetina SE, Watson JD, Fox RM et al (2007) Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biol 8:R135

    Article  Google Scholar 

  48. Watanabe S, Liu Q, Davis MW et al (2013) Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions. Elife 2:e00723

    Article  PubMed Central  PubMed  Google Scholar 

  49. Watanabe S, Punge A, Hollopeter G et al (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8:80–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Weissenberger S, Schultheis C, Liewald JF et al (2011) PACalpha—an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 116:616–625

    Article  CAS  PubMed  Google Scholar 

  51. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340

    Article  CAS  PubMed  Google Scholar 

  52. Xu X, Kim SK (2011) The early bird catches the worm: new technologies for the Caenorhabditis elegans toolkit. Nat Rev Genet 12:793–801

    Article  CAS  PubMed  Google Scholar 

  53. Yemini E, Jucikas T, Grundy LJ et al (2013) A database of Caenorhabditis elegans behavioral phenotypes. Nat Methods 10:877–879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Zhang F, Wang LP, Brauner M et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. The corresponding author states that there are no conflicts of interest.

All national guidelines on the care and use of laboratory animals have been followed and the necessary approval was obtained from the relevant authorities (as far as required for C. elegans).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gottschalk.

Additional information

Translated to English from the original German by Jana Liewald.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gottschalk, A. Optogenetic analyses of neuronal network function and synaptic transmission in Caenorhabditis elegans . e-Neuroforum 5, 77–85 (2014). https://doi.org/10.1007/s13295-014-0064-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13295-014-0064-6

Keywords

Navigation