Log in

miR-522 contributes to cell proliferation of hepatocellular carcinoma by targeting DKK1 and SFRP2

  • Original Article
  • Published:
Tumor Biology

Abstract

The morbidity and mortality of hepatocellular carcinoma (HCC) is very high, finding new therapeutic targets are critical for HCC treatment. miR-522 has been demonstrated to be upregulated in HCC tissues, but its role in HCC progression remains to be elucidated. In this report, we found miR-522 was upregulated in HCC cells and tissues, miR-522 overexpression promoted cell proliferation, colony formation, and cell cycle progression, whereas knockdown of miR-522 reduced these effects. We also analyzed the expression of several key cell cycle regulatory proteins and found overexpression of miR-522-inhibited cell cycle inhibitors p21 and p27 expression and enhanced cyclin D1 expression and the level of Rb phosphorylation, vice versa. These suggested miR-522-accelerated G1/S transition. DKK1 (dickkopf-1) and SFRP2 (secreted frizzled-related protein 2) were the targets of miR-522, their expression was inversely with miR-522 in HCC tissues. DKK1 and SFRP2 the antagonists of Wnt signaling, suggesting miR-522-promoted HCC progression through activating Wnt signaling. miR-522 might be a valuable target for HCC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.

    Article  CAS  PubMed  Google Scholar 

  2. Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20:460–9.

    Article  CAS  PubMed  Google Scholar 

  3. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  CAS  PubMed  Google Scholar 

  4. Kneitz B, Krebs M, Kalogirou C, Schubert M, Joniau S, van Poppel H, et al. Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3. Cancer Res. 2014;74:2591–603.

    Article  CAS  PubMed  Google Scholar 

  5. Ke J, Zhao Z, Hong SH, Bai S, He Z, Malik F, et al. Role of microRNA221 in regulating normal mammary epithelial hierarchy and breast cancer stem-like cells. Oncotarget. 2015;6:3709–21.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xu Q, Li P, Chen X, Zong L, Jiang Z, Nan L, et al. miR-221/222 induces pancreatic cancer progression through the regulation of matrix metalloproteinases. Oncotarget. 2015;6:14153–64.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  8. Wang W, Zhao LJ, Tan YX, Ren H, Qi ZT. MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis. 2012;33:1113–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang W, Zhao LJ, Tan YX, Ren H, Qi ZT. Identification of deregulated miRNAs and their targets in hepatitis B virus-associated hepatocellular carcinoma. World J Gastroenterol. 2012;18:5442–53.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  11. Miao HL, Lei CJ, Qiu ZD, Liu ZK, Li R, Bao ST, et al. MicroRNA-520c-3p inhibits hepatocellular carcinoma cell proliferation and invasion through induction of cell apoptosis by targeting glypican-3. Hepatol Res. 2014;44:338–48.

    Article  CAS  PubMed  Google Scholar 

  12. Shen G, Jia H, Tai Q, Li Y, Chen D. miR-106b downregulates adenomatous polyposis coli and promotes cell proliferation in human hepatocellular carcinoma. Carcinogenesis. 2013;34:211–9.

    Article  CAS  PubMed  Google Scholar 

  13. Fedi P, Bafico A, Nieto Soria A, Burgess WH, Miki T, Bottaro DP, et al. Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling. J Biol Chem. 1999;274:19465–72.

    Article  CAS  PubMed  Google Scholar 

  14. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cain CJ, Manilay JO. Hematopoietic stem cell fate decisions are regulated by Wnt antagonists: comparisons and current controversies. Exp Hematol. 2013;41:3–16.

    Article  CAS  PubMed  Google Scholar 

  16. Wong CM, Fan ST, Ng IO. beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer. 2001;92:136–45.

    Article  CAS  PubMed  Google Scholar 

  17. Takigawa Y, Brown AM. Wnt signaling in liver cancer. Curr Drug Targets. 2008;9:1013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Y, Zhou R, Yuan X, Han N, Zhou S, Xu H, et al. DACH1 is a novel predictive and prognostic biomarker in hepatocellular carcinoma as a negative regulator of Wnt/beta-catenin signaling. Oncotarget. 2015;6:8621–34.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Wei W, Cheng N, Wang K, Li B, Jiang X, et al. Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology. 2012;56:1631–40.

    Article  CAS  PubMed  Google Scholar 

  20. Kerppola TK. Polycomb group complexes—many combinations, many functions. Trends Cell Biol. 2009;19:692–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yuan J, Han B, Hu H, Qian Y, Liu Z, Wei Z, et al. CUL4B activates Wnt/beta-catenin signalling in hepatocellular carcinoma by repressing Wnt antagonists. J Pathol. 2015;235:784–95.

    Article  CAS  PubMed  Google Scholar 

  22. Shen Q, Fan J, Yang XR, Tan Y, Zhao W, Xu Y, et al. Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma: a large-scale, multicentre study. Lancet Oncol. 2012;13:817–26.

    Article  CAS  PubMed  Google Scholar 

  23. Chen L, Li M, Li Q, Wang CJ, **e SQ. DKK1 promotes hepatocellular carcinoma cell migration and invasion through beta-catenin/MMP7 signaling pathway. Mol Cancer. 2013;12:157.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fatima S, Lee NP, Luk JM. Dickkopfs and Wnt/beta-catenin signalling in liver cancer. World J Clin Oncol. 2011;2:311–25.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Umer M, Qureshi SA, Hashmi ZY, Raza A, Ahmad J, Rahman M, et al. Promoter hypermethylation of Wnt pathway inhibitors in hepatitis C virus - induced multistep hepatocarcinogenesis. Virol J. 2014;11:117.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nishida N, Nagasaka T, Nishimura T, Ikai I, Boland CR, Goel A. Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma. Hepatology. 2008;47:908–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shih YL, Hsieh CB, Yan MD, Tsao CM, Hsieh TY, Liu CH, et al. Frequent concomitant epigenetic silencing of SOX1 and secreted frizzled-related proteins (SFRPs) in human hepatocellular carcinoma. J Gastroenterol Hepatol. 2013;28:551–9.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang S, Zhang H, Zhu J, Zhang X, Liu Y. MiR-522 contributes to cell proliferation of human glioblastoma cells by suppressing PHLPP1 expression. Biomed Pharmacother. 2015;70:164–9.

    Article  PubMed  Google Scholar 

  29. Tan SM, Kirchner R, ** J, Hofmann O, McReynolds L, Hide W, et al. Sequencing of captive target transcripts identifies the network of regulated genes and functions of primate-specific miR-522. Cell Rep. 2014;8:1225–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (no. 81160311, 81572429, and 81560477).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianxin Jiang or Chengyi Sun.

Ethics declarations

Conflicts of interest

None

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Knockdown of miR-522 inhibited cell proliferation rate in LO2. (GIF 17 kb)

High resolution image (TIF 46 kb)

Supplemental Figure 2

Western blot determined the expression of cell cycle inhibitors p21 and p27 and cell cycle promoter Cyclin D1 and the phosporylation level of Rb in LO2 with miR-522 knockdown. α-Tubulin was used as the loading control. (GIF 288 kb)

High resolution image (TIF 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yu, C., Chen, M. et al. miR-522 contributes to cell proliferation of hepatocellular carcinoma by targeting DKK1 and SFRP2. Tumor Biol. 37, 11321–11329 (2016). https://doi.org/10.1007/s13277-016-4995-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4995-0

Keywords

Navigation