Log in

Upregulation of miR-132 expression in glioma and its clinical significance

  • Research Article
  • Published:
Tumor Biology

Abstract

miR-132 was found to be overexpressed in glioma; however, its clinical significance has not been investigated. In the present study, we evaluated the association between miR-132 and clinicopathological parameters and prognosis. Quantitative real-time PCR was used to analyze the expression of miR-132 in 113 cases of glioma and 36 cases of normal brain tissues. The association of miR-132 expression with clinicopathological factors and prognosis of glioma patients were analyzed. The expression levels of miR-132 were significantly higher in glioma tissues than that in normal brain tissues (mean ± SD, 4.448 ± 1.857 vs. 1.936 ± 0.543; P < 0.001). The miR-132 expression level was classified as high or low in relation to the median value. High expression of miR-132 was found to significantly correlate with KPS score (P = 0.001); extent of resection (P = 0.009), and WHO grade (P < 0.001). Kaplan–Meier analysis with the log-rank test indicated that high miR-132 expression had a significant impact on overall survival (17.3 vs. 56.2 %; P = 0.04) and progression-free survival (11.7 vs. 50.5 %; P = 0.012). In conclusion, this study identified high miR-132 expression as a biomarker of poor prognosis in patients diagnosed with glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2006;2:494–503. quiz 491 p following 516.

    Article  Google Scholar 

  2. McCarthy BJ, Shibui S, Kayama T, Miyaoka E, Narita Y, Murakami M, et al. Primary CNS germ cell tumors in Japan and the United States: an analysis of 4 tumor registries. Neurol Oncol. 2012;14:1194–200.

    Article  Google Scholar 

  3. D’Abaco GM, Kaye AH. Integrins: molecular determinants of glioma invasion. J Clin Neurosci. 2007;14:1041–8.

    Article  Google Scholar 

  4. Demuth T, Berens ME. Molecular mechanisms of glioma cell migration and invasion. J Neurooncol. 2004;70:217–28.

    Article  Google Scholar 

  5. See SJ, Gilbert MR. Anaplastic astrocytoma: diagnosis, prognosis, and management. Semin Oncol. 2004;31:618–34.

    Article  Google Scholar 

  6. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002;61:215–25. discussion 226–219.

    Article  Google Scholar 

  7. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    Article  Google Scholar 

  8. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res. 2004;64:6892–9.

    Article  CAS  Google Scholar 

  9. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  Google Scholar 

  10. Chen CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 2005;353:1768–71.

    Article  CAS  Google Scholar 

  11. Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, et al. MicroRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A. 2010;107:20382–7.

    Article  CAS  Google Scholar 

  12. Mulik S, Xu J, Reddy PB, Rajasagi NK, Gimenez F, Sharma S, et al. Role of miR-132 in angiogenesis after ocular infection with herpes simplex virus. Am J Pathol. 2012;181:525–34.

    Article  CAS  Google Scholar 

  13. Shaked I, Meerson A, Wolf Y, Avni R, Greenberg D, Gilboa-Geffen A, et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity. 2009;31:965–73.

    Article  CAS  Google Scholar 

  14. Formosa A, Lena AM, Markert EK, Cortelli S, Miano R, Mauriello A, et al. DNA methylation silences miR-132 in prostate cancer. Oncogene. 2013;32:127–34.

    Article  CAS  Google Scholar 

  15. Li S, Meng H, Zhou F, Zhai L, Zhang L, Gu F, et al. MicroRNA-132 is frequently down-regulated in ductal carcinoma in situ (DCIS) of breast and acts as a tumor suppressor by inhibiting cell proliferation. Pathol Res Pract. 2013;209:179–83.

    Article  Google Scholar 

  16. Liu X, Yu H, Cai H, Wang Y. The expression and clinical significance of miR-132 in gastric cancer patients. Diagn Pathol. 2014;9:57.

    Article  Google Scholar 

  17. Wei X, Tan C, Tang C, Ren G, **ang T, Qiu Z, et al. Epigenetic repression of miR-132 expression by the hepatitis B virus x protein in hepatitis B virus-related hepatocellular carcinoma. Cell Signal. 2013;25:1037–43.

    Article  CAS  Google Scholar 

  18. Yang J, Gao T, Tang J, Cai H, Lin L, Fu S. Loss of microRNA-132 predicts poor prognosis in patients with primary osteosarcoma. Mol Cell Biochem. 2013;381:9–15.

    Article  CAS  Google Scholar 

  19. Zhang B, Lu L, Zhang X, Ye W, Wu J, ** Q and Zhang X. Hsa-miR-132 regulates apoptosis in non-small cell lung cancer independent of acetylcholinesterase. J Mol Neurosci 2013.

  20. Zhang S, Hao J, **e F, Hu X, Liu C, Tong J, et al. Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis. 2011;32:1183–9.

    Article  CAS  Google Scholar 

  21. Lages E, Guttin A, El Atifi M, Ramus C, Ipas H, Dupre I, et al. MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PLoS One. 2011;6:e20600.

    Article  CAS  Google Scholar 

  22. Nakazato Y. The 4th edition of WHO classification of tumours of the central nervous system published in 2007. No Shinkei Geka. 2008;36:473–91.

    PubMed  Google Scholar 

  23. Kent OA, Mendell JT. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene. 2006;25:6188–96.

    Article  CAS  Google Scholar 

  24. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  CAS  Google Scholar 

  25. Nudelman AS, DiRocco DP, Lambert TJ, Garelick MG, Le J, Nathanson NM, et al. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. 2010;20:492–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Park JK, Henry JC, Jiang J, Esau C, Gusev Y, Lerner MR, et al. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem Biophys Res Commun. 2011;406:518–23.

    Article  CAS  Google Scholar 

  27. You J, Li Y, Fang N, Liu B, Zu L, Chang R, et al. miR-132 suppresses the migration and invasion of lung cancer cells via targeting the EMT regulator ZEB2. PLoS One. 2014;9:e91827.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-fei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Liao, F., Wu, H. et al. Upregulation of miR-132 expression in glioma and its clinical significance. Tumor Biol. 35, 12299–12304 (2014). https://doi.org/10.1007/s13277-014-2541-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2541-5

Keywords

Navigation