Log in

Meta-analyses of methylation markers for prostate cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Prostate cancer (PCa) is the most frequently diagnosed non-cutaneous cancer that has become the sixth leading cause of mortality in both the developed and develo** countries. Accumulating evidence showed a number of genes with aberrant DNA methylation in the pathogenesis of PCa. Here, we conducted a systematic meta-analysis to evaluate the contribution of aberrantly methylated genes to the risk of PCa. Relevant methylation studies were retrieved from PubMed and Wanfang literature databases. In the meta-analysis, Mantel-Haenszel odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated for each methylation event under appropriate models. A total of 594 publications were initially retrieved from PubMed and Wanfang literature database. After a three-step filtration, we harvested 39 case-control articles investigating the role of gene methylation in the prediction of PCa risk. Among the 31 genes involved, 24 genes were shown to be significantly hypermethylated in the PCa patients. Our meta-analyses identified strong associations of four aberrantly methylated genes (GSTP1, RASSF1, p16, and RARB) with PCa. Further research is needed to strengthen our findings in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA Cancer J Clin. 2000;50:7–33.

    Article  CAS  PubMed  Google Scholar 

  2. Quinn M, Babb P. Patterns and trends in prostate cancer incidence, survival, prevalence and mortality. Part i: International comparisons. BJU Int. 2002;90:162–73.

    Article  CAS  PubMed  Google Scholar 

  3. Giovannucci E, Liu Y, Platz EA, Stampfer MJ, Willett WC. Risk factors for prostate cancer incidence and progression in the health professionals follow-up study. Int J Cancer. 2007;121:1571–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Smith DS, Bullock AD, Catalona WJ, Herschman JD. Racial differences in a prostate cancer screening study. J Urol. 1996;156:1366–9.

    Article  CAS  PubMed  Google Scholar 

  5. Spence AR, Rousseau MC, Karakiewicz PI, Parent ME: Circumcision and prostate cancer: A population-based case-control study in montreal, canada. BJU international 2014.

  6. Alers JC, Krijtenburg PJ, Vis AN, Hoedemaeker RF, Wildhagen MF, Hop WC, et al. Molecular cytogenetic analysis of prostatic adenocarcinomas from screening studies: early cancers may contain aggressive genetic features. Am J Pathol. 2001;158:399–406.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Andriole GL, Crawford ED, Grubb 3rd RL, Buys SS, Chia D, Church TR, et al. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med. 2009;360:1310–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Klotz L, Zhang L, Lam A, Nam R, Mamedov A, Loblaw A. Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J Clin Oncol. 2010;28:126–31.

    Article  PubMed  Google Scholar 

  9. Tourville EA, Nguyen MM. Prostate cancer detection by using digital rectal examination: contemporary practice patterns in the united states. Clin Genitourin Cancer. 2013;11:263–9.

    Article  PubMed  Google Scholar 

  10. Lorincz AT. Cancer diagnostic classifiers based on quantitative DNA methylation. Expert Rev Mol Diagn. 2014;14:293–305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Heyn H, Sayols S, Moutinho C, Vidal E, Sanchez-Mut JV, Stefansson OA, et al. Linkage of DNA methylation quantitative trait loci to human cancer risk. Cell Rep. 2014;7:331–8.

    Article  CAS  PubMed  Google Scholar 

  12. Dong Y, Zhao H, Li H, Li X, Yang S. DNA methylation as an early diagnostic marker of cancer (review). Biomed Rep. 2014;2:326–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Jiang D, Hong Q, Shen Y, Xu Y, Zhu H, Li Y, et al. The diagnostic value of DNA methylation in leukemia: a systematic review and meta-analysis. PLoS ONE. 2014;9:e96822.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Chen C, Wang L, Liao Q, Huang Y, Ye H, Chen F, et al. Hypermethylation of ednrb promoter contributes to the risk of colorectal cancer. Diagn Pathol. 2014;8:199.

    Article  Google Scholar 

  15. Kang GH, Lee S, Lee HJ, Hwang KS. Aberrant cpg island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. J Pathol. 2004;202:233–40.

    Article  CAS  PubMed  Google Scholar 

  16. Maruyama R, Toyooka S, Toyooka KO, Virmani AK, Zochbauer-Muller S, Farinas AJ, et al. Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin Cancer Res. 2002;8:514–9.

    CAS  PubMed  Google Scholar 

  17. Chao C, Chi M, Preciado M, Black MH. Methylation markers for prostate cancer prognosis: a systematic review. Cancer Causes Control. 2014;24:1615–41.

    Article  Google Scholar 

  18. Hanson JA, Gillespie JW, Grover A, Tangrea MA, Chuaqui RF, Emmert-Buck MR, et al. Gene promoter methylation in prostate tumor-associated stromal cells. J Natl Cancer Inst. 2006;98:255–61.

    Article  CAS  PubMed  Google Scholar 

  19. Roupret M, Hupertan V, Catto JW, Yates DR, Rehman I, Proctor LM, et al. Promoter hypermethylation in circulating blood cells identifies prostate cancer progression. Int J Cancer. 2008;122:952–6.

    Article  CAS  PubMed  Google Scholar 

  20. Jeronimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ, et al. Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol. 2011;60:753–66.

    Article  CAS  PubMed  Google Scholar 

  21. Van Neste L, Herman JG, Otto G, Bigley JW, Epstein JI, Van Criekinge W. The epigenetic promise for prostate cancer diagnosis. Prostate. 2012;72:1248–61.

    Article  PubMed  Google Scholar 

  22. DerSimonian R. Meta-analysis in the design and monitoring of clinical trials. Stat Med. 1996;15:1237–48. discussion 1249-1252.

    Article  CAS  PubMed  Google Scholar 

  23. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ Clin Res Ed. 2003;327:557–60.

    Article  Google Scholar 

  24. Bax L, Ikeda N, Fukui N, Yaju Y, Tsuruta H, Moons KG. More than numbers: the power of graphs in meta-analysis. Am J Epidemiol. 2009;169:249–55.

    Article  PubMed  Google Scholar 

  25. Tew KD, Manevich Y, Grek C, **ong Y, Uys J, Townsend DM. The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radic Biol Med. 2011;51:299–313.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Meiers I, Shanks JH, Bostwick DG. Glutathione S-transferase pi (GSTP1) hypermethylation in prostate cancer: Review 2007. Pathology. 2007;39:299–304.

    Article  CAS  PubMed  Google Scholar 

  27. Agathanggelou A, Cooper WN, Latif F. Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res. 2005;65:3497–508.

    Article  CAS  PubMed  Google Scholar 

  28. Kawamoto K, Okino ST, Place RF, Urakami S, Hirata H, Kikuno N, et al. Epigenetic modifications of RASSF1A gene through chromatin remodeling in prostate cancer. Clin Cancer Res. 2007;13:2541–8.

    Article  CAS  PubMed  Google Scholar 

  29. Shapiro GI, Rollins BJ. P16ink4a as a human tumor suppressor. Biochim Biophys Acta. 1996;1242:165–9.

    PubMed  Google Scholar 

  30. Mori T, Miura K, Aoki T, Nishihira T, Mori S, Nakamura Y. Frequent somatic mutation of the MTS1/CDK4I (multiple tumor suppressor/cyclin-dependent kinase 4 inhibitor) gene in esophageal squamous cell carcinoma. Cancer Res. 1994;54:3396–7.

    CAS  PubMed  Google Scholar 

  31. Hayashi N, Sugimoto Y, Tsuchiya E, Ogawa M, Nakamura Y. Somatic mutations of the MTS (multiple tumor suppressor) 1/CDK4l (cyclin-dependent kinase-4 inhibitor) gene in human primary non-small cell lung carcinomas. Biochem Biophys Res Commun. 1994;202:1426–30.

    Article  CAS  PubMed  Google Scholar 

  32. Ohnishi H, Kawamura M, Ida K, Sheng XM, Hanada R, Nobori T, et al. Homozygous deletions of p16/MTS1 gene are frequent but mutations are infrequent in childhood T-cell acute lymphoblastic leukemia. Blood. 1995;86:1269–75.

    CAS  PubMed  Google Scholar 

  33. Ines FM, Gauna GV, Lis SM, Beatriz NS, Matias SA, Maria VR: Retinoic acid reduces migration of human breast cancer cells: role of retinoic acid receptor beta. J Cell Mol Med 2014.

  34. Jeronimo C, Henrique R, Hoque MO, Ribeiro FR, Oliveira J, Fonseca D, et al. Quantitative RARbeta2 hypermethylation: a promising prostate cancer marker. Clin Cancer Res. 2004;10:4010–4. 

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W, Ma Z, Lu S, Wang R, Zhao P, Wang L. Correlation of dnmt1 expression with gstp1 and apc methylation and its clinical significance. Acta Academiae Medicinae Militaris Tertiae 2011;33(15):4602–5.

Download references

Acknowledgments

This work was supported by the grants from: National Natural Science Foundation of China (31100919 and 81371469), Natural Science Foundation of Zhejiang Province (LR13H020003), and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwei Duan.

Additional information

Danjie Jiang, Yusheng Shen, and Dongjun Dai are co-first authors of this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 287 kb)

ESM 2

(DOC 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Shen, Y., Dai, D. et al. Meta-analyses of methylation markers for prostate cancer. Tumor Biol. 35, 10449–10455 (2014). https://doi.org/10.1007/s13277-014-2300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2300-7

Keywords

Navigation