Log in

Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and testing systems suitable for non-crosslinked, biological heart valves. The objective of this study was to assess the hydrodynamic performance of intact, bioengineered pulmonary valves using a custom pulse duplicator capable of testing intact biological valved conduits. The mechanical behavior of valve associated sinus and arterial tissue was also evaluated under biaxial loading. Cryopreserved, decellularized, extracellular matrix (ECM) conditioned and glutaraldehyde fixed valves showed reduced pressure gradients and increased effective orifice area for decellularized and ECM conditioned valves. ECM conditioning resulted in increased elastic modulus but decreased stretch in circumferential and longitudinal directions under biaxial loading. Overall, decellularization and ECM conditioning did not compromise the scaffolds, which exhibited satisfactory bench top performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Baskett, R. J., M. A. Nanton, A. E. Warren, and D. B. Ross. Human leukocyte antigen-DR and ABO mismatch are associated with accelerated homograft valve failure in children: implications for therapeutic interventions. J. Thorac. Cardiovasc. Surg. 126(1):232–239, 2003; ((discussion 81)).

    Article  Google Scholar 

  2. Bechtel, J. F., A. Marquardt, M. Muller-Steinhardt, T. Hankel, U. Stierle, and H. H. Sievers. Anti-HLA antibodies and pulmonary valve allograft function after the Ross procedure. J. Heart Valve Dis. 18(6):673–680, 2009.

    Google Scholar 

  3. Boer, U., A. Lohrenz, M. Klingenberg, A. Pich, A. Haverich, and M. Wilhelmi. The effect of detergent-based decellularization procedures on cellular proteins and immunogenicity in equine carotid artery grafts. Biomaterials. 32(36):9730–9737, 2011. doi:10.1016/j.biomaterials.2011.09.015.

    Article  Google Scholar 

  4. Boethig, D., H. Goerler, M. Westhoff-Bleck, M. Ono, A. Daiber, A. Haverich, et al. Evaluation of 188 consecutive homografts implanted in pulmonary position after 20 years. Eur. J. Cardio-thorac. Surg 32(1):133–142, 2007. doi:10.1016/j.ejcts.2007.02.025.

    Article  Google Scholar 

  5. Bottio, T., V. Tarzia, C. Dal Lin, E. Buratto, G. Rizzoli, M. Spina, et al. The changing hydrodynamic performance of the decellularized intact porcine aortic root: considerations on in vitro testing. J. Heart Valve Dis. 19(4):485–491, 2010.

    Google Scholar 

  6. Converse, G. L., M. Armstrong, R. W. Quinn, E. E. Buse, M. L. Cromwell, S. J. Moriarty, et al. Effects of cryopreservation, decellularization and novel extracellular matrix conditioning on the quasi-static and time-dependent properties of the pulmonary valve leaflet. Acta Biomater. 8(7):2722–2729, 2012. doi:10.1016/j.actbio.2012.03.047.

    Article  Google Scholar 

  7. Converse, G. L., E. E. Buse, K. R. Neill, C. R. McFall, H. N. Lewis, M. C. VeDepo, et al. Design and efficacy of a single-use bioreactor for heart valve tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2015. doi:10.1002/jbm.b.33552.

    Google Scholar 

  8. Gilbert, T. W., T. L. Sellaro, and S. F. Badylak. Decellularization of tissues and organs. Biomaterials 27(19):3675–3683, 2006. doi:10.1016/j.biomaterials.2006.02.014.

    Google Scholar 

  9. Hooper, D. K., J. A. Hawkins, T. C. Fuller, T. Profaizer, and R. E. Shaddy. Panel-reactive antibodies late after allograft implantation in children. Ann. Thorac. Surg. 79(2):641–644, 2005. doi:10.1016/j.athoracsur.2004.07.052; ((discussion 5)).

    Article  Google Scholar 

  10. Hopkins, R. A., A. L. Jones, L. Wolfinbarger, M. A. Moore, A. A. Bert, G. K. Lofland. Decellularization reduces calcification while improving both durability and 1-year functional results of pulmonary homograft valves in juvenile sheep. J. Thorac. Cardiovasc. Surg. 137(4):907–913, 13e1-4, 2009. doi:10.1016/j.jtcvs.2008.12.009.

  11. Standardization IOo. Cardiovascular implants—cardiac valve prostheses—Part 2: surgically implanted heart valve substitues. ISO 5840-2:20142014.

  12. Standardization IOo. Cardiovascular implants—cardiac valve prostheses—Part 3: heart valve substitutes implanted by transcatheter techniques. ISO 5840-3:20132013.

  13. Karamlou, T., E. H. Blackstone, J. A. Hawkins, M. L. Jacobs, K. R. Kanter, J. W. Brown, et al. Can pulmonary conduit dysfunction and failure be reduced in infants and children less than age 2 years at initial implantation? J. Thorac. Cardiovasc. Surg. 132(4):829–838, 2006. doi:10.1016/j.jtcvs.2006.06.034.

    Article  Google Scholar 

  14. Kaza, A. K., H. G. Lim, D. J. Dibardino, V. Bautista-Hernandez, J. Robinson, C. Allan, et al. Long-term results of right ventricular outflow tract reconstruction in neonatal cardiac surgery: options and outcomes. J. Thorac. Cardiovasc. Surg. 138(4):911–916, 2009. doi:10.1016/j.jtcvs.2008.10.058.

    Article  Google Scholar 

  15. Lee, C., C. S. Park, C. H. Lee, J. G. Kwak, S. J. Kim, W. S. Shim, et al. Durability of bioprosthetic valves in the pulmonary position: long-term follow-up of 181 implants in patients with congenital heart disease. J. Thorac. Cardiovasc. Surg. 142(2):351–358, 2011. doi:10.1016/j.jtcvs.2010.12.020.

    Article  Google Scholar 

  16. Lehr, E. J., G. R. Rayat, B. Chiu, T. Churchill, L. E. McGann, J. Y. Coe, et al. Decellularization reduces immunogenicity of sheep pulmonary artery vascular patches. J. Thorac. Cardiovasc. Surg. 141(4):1056–1062, 2011. doi:10.1016/j.jtcvs.2010.02.060.

    Article  Google Scholar 

  17. Liao, J., E. M. Joyce, and M. S. Sacks. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 29(8):1065–1074, 2008. doi:10.1016/j.biomaterials.2007.11.007.

    Article  Google Scholar 

  18. Mendoza-Novelo, B., E. E. Avila, J. V. Cauich-Rodriguez, E. Jorge-Herrero, F. J. Rojo, G. V. Guinea, et al. Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta Biomater. 7(3):1241–1248, 2011. doi:10.1016/j.actbio.2010.11.017.

    Article  Google Scholar 

  19. Poynter, J. A., P. Eghtesady, B. W. McCrindle, H. L. Walters, 3rd, P. M. Kirshbom, E. H. Blackstone, et al. Association of pulmonary conduit type and size with durability in infants and young children. Ann. Thorac. Surg. 96(5):1695–1701, 2013. doi:10.1016/j.athoracsur.2013.05.074; ((discussion 701–702)).

    Article  Google Scholar 

  20. Quinn, R. W., S. L. Hilbert, A. A. Bert, B. W. Drake, J. A. Bustamante, J. E. Fenton, et al. Performance and morphology of decellularized pulmonary valves implanted in juvenile sheep. Ann. Thorac Surg. 92(1):131–137, 2011. doi:10.1016/j.athoracsur.2011.03.039.

    Article  Google Scholar 

  21. Quinn, R. W., S. L. Hilbert, G. L. Converse, A. A. Bert, E. Buse, W. B. Drake, et al. Enhanced autologous re-endothelialization of decellularized and extracellular matrix conditioned allografts implanted into the right ventricular outflow tracts of juvenile sheep. Cardiovascular engineering and technology. 3(2):217–227, 2012. doi:10.1007/s13239-011-0078-y.

    Article  Google Scholar 

  22. Sanders, B., S. Loerakker, E. S. Fioretta, D. J. Bax, A. Driessen-Mol, S. P. Hoerstrup, et al. Improved geometry of decellularized tissue engineered heart valves to prevent leaflet retraction. Ann. Biomed. Eng. 44(4):1061–1071, 2016. doi:10.1007/s10439-015-1386-4.

    Article  Google Scholar 

  23. Schmidt, D., P. E. Dijkman, A. Driessen-Mol, R. Stenger, C. Mariani, A. Puolakka, et al. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J. Am. Coll Cardiol. 56(6):510–520, 2010. doi:10.1016/j.jacc.2010.04.024.

    Article  Google Scholar 

  24. Sedaghat, A., J. M. Sinning, M. Utzenrath, P. F. Ghalati, C. Schmitz, N. Werner, et al. Hydrodynamic performance of the medtronic corevalve and the edwards SAPIEN XT transcatheter heart valve in surgical bioprostheses: an in vitro valve-in-valve model. Ann Thorac Surg. 101(1):118–124, 2016. doi:10.1016/j.athoracsur.2015.06.047.

    Article  Google Scholar 

  25. Seebacher, G., C. Grasl, M. Stoiber, E. Rieder, M. T. Kasimir, D. Dunkler, et al. Biomechanical properties of decellularized porcine pulmonary valve conduits. Artif Organs. 32(1):28–35, 2008. doi:10.1111/j.1525-1594.2007.00452.x.

    Google Scholar 

  26. Sheridan, W. S., G. P. Duffy, and B. P. Murphy. Mechanical characterization of a customized decellularized scaffold for vascular tissue engineering. J. Mech. Behav. Biomed. Mater. 8:58–70, 2012. doi:10.1016/j.jmbbm.2011.12.003.

    Article  Google Scholar 

  27. Tudorache, I., S. Cebotari, G. Sturz, L. Kirsch, C. Hurschler, A. Hilfiker, et al. Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves. J. Heart Valve Dis. 16(5):567–573, 2007; ((discussion 74)).

    Google Scholar 

  28. US Food and Drug Administration CfDaRH. Draft guidance for industry and FDA staff: heart valves—in vestigational device exemption (IDE) and premarket approval (PMA) applications, 2010.

  29. Weymann, A., T. Radovits, B. Schmack, S. Korkmaz, S. Li, N. Chaimow, et al. Total aortic arch replacement: superior ventriculo-arterial coupling with decellularized allografts compared with conventional prostheses. PloS One 9(7):e103588, 2014. doi:10.1371/journal.pone.0103588.

    Article  Google Scholar 

  30. Williams, C., J. Liao, E. M. Joyce, B. Wang, J. B. Leach, M. S. Sacks, et al. Altered structural and mechanical properties in decellularized rabbit carotid arteries. Acta Biomater. 5(4):993–1005, 2009. doi:10.1016/j.actbio.2008.11.028.

    Article  Google Scholar 

  31. Yoganathan, A. P., M. Fogel, S. Gamble, M. Morton, P. Schmidt, J. Secunda, et al. A new paradigm for obtaining marketing approval for pediatric-sized prosthetic heart valves. J. Thorac. Cardiovasc. Surg. 146(4):879–886, 2013. doi:10.1016/j.jtcvs.2013.04.016.

    Article  Google Scholar 

  32. Zou, Y., and Y. Zhang. Mechanical evaluation of decellularized porcine thoracic aorta. J. Surg. Res. 175(2):359–368, 2012. doi:10.1016/j.jss.2011.03.070.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded through generous grant support from the Katherine B. Richardson Foundation at Children’s Mercy.

Conflict of Interest

Authors Buse, Hopkins and Converse are listed inventors on pending patent 14/390,170. Author Hopkins is a listed inventor on the following patents: 10/0035344 A1; 12/813,487; 2010/0042120 A1; 6,652583 B2; 2009257400; 20130280319 A1. Author Hopkins reports grants from LifeNet Health, outside of the submitted work. Author Hilbert declares that he has no conflict of interest.

Statement of Human Studies

No human studies were carried out by the authors for this article.

Statement of Animal Studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel L. Converse.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7091 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buse, E.E., Hilbert, S.L., Hopkins, R.A. et al. Pulse Duplicator Hydrodynamic Testing of Bioengineered Biological Heart Valves. Cardiovasc Eng Tech 7, 352–362 (2016). https://doi.org/10.1007/s13239-016-0275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-016-0275-9

Keywords

Navigation