Log in

Synthesis of novel telechelic fluoropolyols based on vinylidene fluoride/hexafluoropropylene copolymers by iodine transfer polymerization

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Well-defined α,ω-diiodo-poly(vinylidene fluoride (VDF)-co-hexafluoropropylene (HFP)) with a narrow unimodal molecular weight distribution (polydispersity index < 1.3) was subjected to iodine transfer polymerization, which allows controlled “pseudo-living” free radical telomerization. The molecular weight of the obtained polymer increased linearly with polymerization time, and the molecular weight distribution was determined by size exclusion chromatography. The prepared α,ω-diiodo-poly(VDF-co-HFP) was converted to α,ω-bis(hydroxyethyl)-poly(VDF-co-HFP) as a novel telechelic fluoropolyol by incorporation of ethylene units and subsequent hydrolysis with aqueous bicarbonate (acting as a nucleophile and phasetransfer reagent) in hexamethylphosphoramide, a polar aprotic solvent. The obtained fluorinated polyol was characterized by 1H, 13C, and 19F NMR and exhibited a molecular weight below 3,000 Da, making it a suitable telechelic fluorinated prepolymer for the synthesis of fluorinated polyurethanes or their acrylate oligomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Scheirs, Modern Fluoropolymers: High Performance Polymers for Diverse Applications, John Wiley & Sons Ltd., New York, 1997.

    Google Scholar 

  2. G. Hougham, T. Davidson, P. Cassidy, and K. Johns, Fluoropolymers, Kluvert, New York, 1999.

    Google Scholar 

  3. U. Klinge, B. Klosterhafen, A. P. Ottinger, K. Junge, and V. Schumpelick, Biomaterials, 23, 3487 (2002).

    Article  CAS  Google Scholar 

  4. B. Ameduri and B. Boutevin, Well-Architectured Fluoropolymers: Synthesis, Properties and Applications, Elsevier, Amsterdam, 2004.

    Google Scholar 

  5. A. E. Feiring, R. E. Banks, B. E. Smart, and J. C. Tatlow, in Organofluorine Chemistry: Principles and Commercial Applications, Plenum Press, New York, 1994, Vol. 15, p 339.

    Article  Google Scholar 

  6. Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles, SPIE, Bellingham, WA, 2001.

    Google Scholar 

  7. T. T. Wang, J. M. Herbert, and A. M. Glass, Application of the Ferroelectric Polymers, Blackie, Chapman & Hall, New York, 1988.

    Google Scholar 

  8. H. Nalwa, Ferroelectric Polymers, Marcel Dekker, New York, 1995.

    Google Scholar 

  9. Y. Yang, S. Ramalingam, G. Wu, S. L. Hsu, L. W. Kleiner, F. W. Tang, N. Ding, and S. Hssainy, Polymer, 49, 1926 (2008).

    Article  CAS  Google Scholar 

  10. S. J. Kang, I. Bae, Y. J. Park, J. Huh, L. S. M. Park, H. C. Kim, and C. Park, Nano Lett., 11, 138 (2011).

    Article  CAS  Google Scholar 

  11. H. Tai, W. Wang, and S. M. Howdle, Macromolecules, 38, 9135 (2005).

    Article  CAS  Google Scholar 

  12. M. Apostolo, V. Arcella, G. Storti, and M. Morbidelli, Macromolecules, 32, 989 (1999).

    Article  CAS  Google Scholar 

  13. G. Ajroldi, M. Pianca, M. Fumagalli, and G. Moggi, Polymer, 30, 2180 (1989).

    Article  CAS  Google Scholar 

  14. T. S. Ahmed, J. M. DeSimone, and G. W. Roberts, Macromolecules, 39, 15 (2006).

    Article  CAS  Google Scholar 

  15. H. Kaspar, K. Hintzer, G. Dewitte, and W. Schwertfeger, U.S. Patent 6693152 (2004).

    Google Scholar 

  16. J. E. Dohany and J. S. Humphrey, in Encyclopedia of Polymer Science and Engineering, 2nd ed., John Wiley & Sons, New York, 1989, pp 532–548.

    Google Scholar 

  17. T. S. Ahmed, J. M. Desimone, and G. W. Roberts, Macromolecules, 41, 2086 (2008).

    Article  Google Scholar 

  18. P. Bonardelli, G. Moggi, and A. Turturro, Polymer, 27, 905 (1986).

    Article  CAS  Google Scholar 

  19. F. R. Mayo and F. M. Lewis, J. Am. Chem. Soc., 66, 1594 (1944).

    Article  CAS  Google Scholar 

  20. T. Ho, A. A. Malik, K. J. Wynne, T. J. McCarthy, K. H.–Z. Zhuang, K. Baum, and R. V. Honeychuck, ACS Symp. Ser., 624, 363 (1996).

    Google Scholar 

  21. C. Tonelli, T. Trombetta, M. Scicchitano, and G. Castiglioni, J. Appl. Polym. Sci., 57, 1031 (1995).

    Article  CAS  Google Scholar 

  22. M. Tatemoto and T. Nakagawa, U.S. Patent 4,158,678 (1979).

    Google Scholar 

  23. M. Oka and M. Tatemoto, Contemp. Topics Polym. Sci., 4, 763 (1984).

    Article  CAS  Google Scholar 

  24. A. Petchsuk, Ferroelectric Terpolymers, Based on Semicrystalline VDF/TRFE/Chloro-Containing Termonomers: Synthesis, Electrical Properties, and Functionalization Reactions, Doctoral dissertation, The Pennsylvania State University, ProQuest Dissertations Publishing, 2003.

    Google Scholar 

  25. P. B. Zetterlund, Y. Kagawa, and M. Okubo, Chem. Rev., 108, 3747 (2008).

    Article  CAS  Google Scholar 

  26. J. Qiu, B. Charleux, and K. Matyjaszewski, Prog. Polym. Sci., 26, 2083 (2001).

    Article  CAS  Google Scholar 

  27. C. Boyer, D. Valade, L. Sauguet, B. Ameduri, and B. Boutevin, Macromolecules, 38, 10353 (2005).

    Article  CAS  Google Scholar 

  28. K. Matyjaszewski, S. Gaynor, and J.-S. Wang, Macromolecules, 28, 2093 (1995).

    Article  CAS  Google Scholar 

  29. S. Sue-eng, T. Boonchuwong, P. Chaiyasat, M. Okub, and A. Chaiyasat, Polymer, 110, 124 (2017).

    Article  CAS  Google Scholar 

  30. T. Hayashi and M. Matsuo, U.S. Patent 4001309 (1977).

    Google Scholar 

  31. G. Bargigia, C. Tonelli, and V. Tortelli, U.S. Patent 4748282 (1988).

    Google Scholar 

  32. K. Baum and A. A. Malik, J. Org. Chem., 59, 6804 (1994).

    Article  CAS  Google Scholar 

  33. R. O. Hutchins and I. M. Taffer, J. Org. Chem., 48, 1360 (1983).

    Article  CAS  Google Scholar 

  34. K. Baum, A. A. Malik, and D. Tzeng, U.S. Patent 4942164 (1990).

    Google Scholar 

  35. A. A. Malik, D. Tzeng, and K. Baum, J. Org. Chem., 56, 3043 (1991).

    Article  CAS  Google Scholar 

  36. M. Tatemoto, Kobunshi Ronbunshu, 49, 765 (1992).

    Article  CAS  Google Scholar 

  37. K. Baum, T. G. Archibald, and A. A. Malik, U.S. Patent 5204441 (1993).

    Google Scholar 

  38. R. O. Hutchins and I. M. Taffer, J. Org. Chem., 48, 1360 (1983).

    Article  CAS  Google Scholar 

  39. J. E. Dohany, U.S. Patent 4076929 (1978).

    Google Scholar 

  40. M. Pianca, P. Bonardelli, M. Tato, G. Cirillo, and G. Moggi, Polymer, 28, 224 (1987).

    Article  CAS  Google Scholar 

  41. P. K. Isbester, J. L. Brandt, T. A. Kestner, and E. J. Munson, Macromolecules, 31, 8192 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bumjae Lee.

Additional information

Acknowledgments: This work was supported by POSCO (project No. 2015P070).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Jh., Lee, B., Won, Jw. et al. Synthesis of novel telechelic fluoropolyols based on vinylidene fluoride/hexafluoropropylene copolymers by iodine transfer polymerization. Macromol. Res. 25, 1028–1034 (2017). https://doi.org/10.1007/s13233-017-5137-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5137-2

Keywords

Navigation