Log in

The solution of the time-space fractional diffusion equation based on the Chebyshev collocation method

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider the solution of the initial and boundary value problem for the time-space fractional diffusion equation in the sense of Caputo based on the Chebyshev collocation method. Firstly, the problem is converted to an initial value problem for a fractional integral-differential equation which absorbs the boundary conditions. Then the shifted Chebyshev polynomials and collocation method for the space variable are used. The coefficient functions of the Chebyshev expansion are solved through the Picard iterative process and the matrix Mittag-Leffler functions for the time variable. We also present a numerical method to cope with the improper convolution integral on the time variable. Finally, a numerical example is verified via the proposed method. The results demonstrate the effectiveness and great potential of the Chebyshev polynomials and the matrix Mittag-Leffler functions for the solution of the fractional differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li, M.: Theory of Fractional Engineering Vibrations. De Gruyter, Berlin (2021)

    Book  Google Scholar 

  2. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College, London (2010)

    Book  MATH  Google Scholar 

  3. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Applied Mechanics Reviews 63, 010801 (2010)

    Article  Google Scholar 

  4. Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. Journal of Applied Mechanics 51, 725–728 (1984)

    Article  MATH  Google Scholar 

  5. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Controls, Fundamentals and Applications. Springer, London (2010)

    Book  MATH  Google Scholar 

  6. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  7. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  8. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  9. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  10. Lubich, C.: Discretized fractional calculus. SIAM Journal on Mathematical Analysis 17(3), 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. Journal of Computational and Applied Mathematics 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Applied Numerical Mathematics 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meerschaert, M.M., Tadjeran, C.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. Journal of Computational Physics 220, 813–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rawashdeh, E.A.: Numerical solution of fractional integro-differential equations by collocation method. Applied Mathematics and Computation 176, 1–6 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jafari, H., Daftardar-Gejji, V.: Solving linear and nonlinear fractional diffusion and wave equations by adomian decomposition. Applied Mathematics and Computation 180, 488–497 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fan, Q., Wu, G.C., Fu, H.: A note on function space and boundedness of the general fractional integral in continuous time random walk. Journal of Nonlinear Mathematical Physics 29, 95–102 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, G.C., Baleanu, D., Zeng, S.D., Deng, Z.G.: Discrete fractional diffusion equation. Nonlinear Dynamics 80, 281–286 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Garrappa, R.: Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6(2), 16 (2018)

    Article  MATH  Google Scholar 

  19. Deng, W.H., Hesthaven, J.S.: Local discontinuous galerkin methods for fractional diffusion equations. ESAIM Mathematical Modelling and Numerical Analysis 47, 1845–1864 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, A., Li, C.P.: Numerical solution of fractional diffusion-wave equation. Numerical Functional Analysis and Optimization 37, 19–39 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khader, M.M.: On the numerical solutions for the fractional diffusion equation. Communications in Nonlinear Science and Numerical Simulation 16, 2535–2542 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sweilam, N.H., Nagy, A.M., El-Sayed, A.A.: Second kind shifted chebyshev polynomials for solving space fractional order diffusion equation. Chaos, Solitons & Fractals 73, 141–147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sweilam, N.H., Nagy, A.M., El-Sayed, A.A.: On the numerical solution of space fractional order diffusion equation via shifted chebyshev polynomials of the third kind. Journal of King Saud University-Science 28, 41–47 (2016)

    Article  Google Scholar 

  24. Duan, J.S.: The boundary value problems for fractional ordinary differential equations with robin boundary conditions. International Journal of Applied Mathematics & Statistics 57, 200–214 (2018)

    Google Scholar 

  25. Mainardi, F., Gorenflo, R.: On mittag-leffler-type functions in fractional evolution processes. Journal of Computational and Applied Mathematics 118, 283–299 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman & Hall/CRC, Londoon (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 11772203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsheng Duan.

Additional information

Communicated by NM Bujurke.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, J., **g, L. The solution of the time-space fractional diffusion equation based on the Chebyshev collocation method. Indian J Pure Appl Math (2023). https://doi.org/10.1007/s13226-023-00495-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13226-023-00495-y

Keywords

Mathematics Subject Classification

Navigation