Log in

Fabrication of Cell Spheroids for 3D Cell Culture and Biomedical Applications

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The significance of 3D cell culture—i.e., the maintenance of cell characteristics by mimicking the natural environment—has been increasing, and various 3D cell culture methods have been proposed. 3D cell culture is a widely used cell spheroid culture method, which is a representative method of matrix-free 3D cell culture. In contrast with that in conventional 2D cell culture, cells aggregate in a spherical shape with abundant cell–cell and cell–matrix interactions that more closely resemble the in vivo environment in a 3D culture. In a cell spheroid culture, the viability and functionality of spheroids change based on the cell type and morphology, and their controllable characteristics differ depending on the fabrication method used. Moreover, the mass production and size controllability of spheroids are dependent on the fabrication method used; therefore, the spheroid utilization method is also different. In this review, representative cell spheroid fabrication methods are examined, and the possibility of standardization is discussed so that these methods can be widely used. In addition, the biomedical applications of spheroids and their potential for future development are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abbott, A.: Cell culture: biology’s new dimension. Nature 424, 870–872 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. Tibbitt, M.W., Anseth, K.S.: Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fennema, E., Rivron, N., Rouwkema, J., van Blitterswijk, C., de Boer, J.: Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 31, 108–115 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. Jensen, C., Teng, Y.: Is it time to start transitioning from 2D to 3D cell culture? Front Mol. Biosci. 7, 33 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lauschke, V.M., Hendriks, D.F., Bell, C.C., Andersson, T.B., Ingelman-Sundberg, M.: Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chem. Res. Toxicol. 29, 1936–1955 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. Pinto, B., Henriques, A.C., Silva, P.M.A., Bousbaa, H.: Three-dimensional spheroids as in vitro preclinical models for cancer research. Pharmaceutics 12, 1186 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moroni, L., de Wijn, J.R., van Blitterswijk, C.A.: Integrating novel technologies to fabricate smart scaffolds. J. Biomater. Sci. Polym. Ed 19, 543–572 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. Stratton, S., Shelke, N.B., Hoshino, K., Rudraiah, S., Kumbar, S.G.: Bioactive polymeric scaffolds for tissue engineering. Bioact. Mater. 1, 93–108 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lu, T., Li, Y., Chen, T.: Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int. J. Nanomed. 8, 337–350 (2013)

    Article  Google Scholar 

  10. Nunes, A.S., Barros, A.S., Costa, E.C., Moreira, A.F., Correia, I.J.: 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol. Bioeng. 116, 206–226 (2019)

    Article  CAS  PubMed  Google Scholar 

  11. Lin, R.Z., Chang, H.Y.: Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol. J. 3, 1172–1184 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. Cui, X., Hartanto, Y., Zhang, H.: Advances in multicellular spheroids formation. J. R Soc. Interface 14, 20160877 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim, S.J., Kim, E.M., Yamamoto, M., Park, H., Shin, H.: Engineering Multi-Cellular Spheroids for Tissue Engineering and Regenerative Medicine. Adv. Healthc. Mater. 9, e2000608 (2020)

    Article  Google Scholar 

  14. Tostoes, R.M., Leite, S.B., Serra, M., Jensen, J., Bjorquist, P., Carrondo, M.J., Brito, C., Alves, P.M.: Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing. Hepatology 55, 1227–1236 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. Gionet-Gonzales, M.A., Leach, J.K.: Engineering principles for guiding spheroid function in the regeneration of bone, cartilage, and skin. Biomed. Mater. 13, 034109 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bartosh, T.J., Ylostalo, J.H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., Lee, R.H., Choi, H., Prockop, D.J.: Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc. Natl. Acad. Sci. U S A 107, 13724–13729 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2022. CA Cancer J. Clin 72, 7–33 (2022)

    Article  PubMed  Google Scholar 

  18. Chatzinikolaidou, M.: Cell spheroids: the new frontiers in in vitro models for cancer drug validation. Drug Discov. Today 21, 1553–1560 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Park, I.S., Chung, P.S., Ahn, J.C.: Enhancement of ischemic wound healing by spheroid grafting of human adipose-derived stem cells treated with low-level light irradiation. PLoS ONE 10, e0122776 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Laschke, M.W., Menger, M.D.: Life is 3D: boosting spheroid function for tissue engineering. Trends Biotechnol. 35, 133–144 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. Guo, L., Ge, J., Zhou, Y., Wang, S., Zhao, R.C., Wu, Y.: Three-dimensional spheroid-cultured mesenchymal stem cells devoid of embolism attenuate brain stroke injury after intra-arterial injection. Stem Cells Dev. 23, 978–989 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. Evans, M.J., Kaufman, M.H.: Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981)

    Article  CAS  PubMed  Google Scholar 

  23. Takayama, K., Kawabata, K., Nagamoto, Y., Kishimoto, K., Tashiro, K., Sakurai, F., Tachibana, M., Kanda, K., Hayakawa, T., Furue, M.K., Mizuguchi, H.: 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials 34, 1781–1789 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. Ong, C.S., Fukunishi, T., Zhang, H., Huang, C.Y., Nashed, A., Blazeski, A., DiSilvestre, D., Vricella, L., Conte, J., Tung, L., Tomaselli, G.F., Hibino, N.: Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci. Rep. 7, 4566 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mironov, V., Visconti, R.P., Kasyanov, V., Forgacs, G., Drake, C.J., Markwald, R.R.: Organ printing: tissue spheroids as building blocks. Biomaterials 30, 2164–2174 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Madrigal, M., Rao, K.S., Riordan, N.H.: A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J. Transl. Med. 12, 260 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wechsler, M.E., Rao, V.V., Borelli, A.N., Anseth, K.S.: Engineering the MSC secretome: a hydrogel focused approach. Adv. Healthc. Mater. 10, e2001948 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ingelman-Sundberg, M.: Pharmacogenomic biomarkers for prediction of severe adverse drug reactions. N. Engl J. Med. 358, 637–639 (2008)

    Article  CAS  PubMed  Google Scholar 

  29. Olson, H., Betton, G., Robinson, D., Thomas, K., Monro, A., Kolaja, G., Lilly, P., Sanders, J., Sipes, G., Bracken, W., Dorato, M., Van Deun, K., Smith, P., Berger, B., Heller, A.: Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol. 32, 56–67 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. Rowe, C., Gerrard, D.T., Jenkins, R., Berry, A., Durkin, K., Sundstrom, L., Goldring, C.E., Park, B.K., Kitteringham, N.R., Hanley, K.P., Hanley, N.A.: Proteome-wide analyses of human hepatocytes during differentiation and dedifferentiation. Hepatology 58, 799–809 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. Anada, T., Fukuda, J., Sai, Y., Suzuki, O.: An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids. Biomaterials 33, 8430–8441 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. Raghavan, S., Mehta, P., Horst, E.N., Ward, M.R., Rowley, K.R., Mehta, G.: Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity. Oncotarget 7(13), 16948 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dean, D.M., Napolitano, A.P., Youssef, J., Morgan, J.R.: Rods, tori, and honeycombs: the directed self-assembly of microtissues with prescribed microscale geometries. FASEB J 21, 4005–4012 (2007)

    Article  CAS  PubMed  Google Scholar 

  34. De Lora, J.A., Velasquez, J.L., Carroll, N.J., Freyer, J.P., Shreve, A.P.: Centrifugal generation of droplet-based 3D cell cultures. SLAS Technol. 25, 436–445 (2020)

    Article  PubMed  Google Scholar 

  35. Kim, W., Gwon, Y., Park, S., Kim, H., Kim, J.: Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater 19, 50–74 (2023)

    Article  CAS  PubMed  Google Scholar 

  36. Ro, J., Kim, J., Cho, Y.K.: Recent advances in spheroid-based microfluidic models to mimic the tumour microenvironment. Analyst 147, 2023–2034 (2022)

    Article  CAS  PubMed  Google Scholar 

  37. Moshksayan, K., Kashaninejad, N., Warkiani, M.E., Lock, J.G., Moghadas, H., Firoozabadi, B., Saidi, M.S., Nguyen, N.T.: Spheroids-on-a-chip: Recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sens. Actuators B Chem. 263, 151–176 (2018)

    Article  CAS  Google Scholar 

  38. Kim, G., Jung, Y., Cho, K., Lee, H.J., Koh, W.G.: Thermoresponsive poly(N-isopropylacrylamide) hydrogel substrates micropatterned with poly(ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval. Mater. Sci. Eng. C Mater. Biol. Appl. 115, 111128 (2020)

    Article  CAS  PubMed  Google Scholar 

  39. Hong, H.J., Cho, J.M., Yoon, Y.J., Choi, D., Lee, S., Lee, H., Ahn, S., Koh, W.G., Lim, J.Y.: Thermoresponsive fiber-based microwells capable of formation and retrieval of salivary gland stem cell spheroids for the regeneration of irradiation-damaged salivary glands. J. Tissue Eng. 13, 20417314221085644 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cho, C.Y., Chiang, T.H., Hsieh, L.H., Yang, W.Y., Hsu, H.H., Yeh, C.K., Huang, C.C., Huang, J.H.: Development of a novel hanging drop platform for engineering controllable 3D microenvironments. Front Cell Dev. Biol. 8, 327 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Aijian, A.P., Garrell, R.L.: Digital microfluidics for automated hanging drop cell spheroid culture. J. Lab Autom. 20, 283–295 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. Drewitz, M., Helbling, M., Fried, N., Bieri, M., Moritz, W., Lichtenberg, J., Kelm, J.M.: Towards automated production and drug sensitivity testing using scaffold-free spherical tumor microtissues. Biotechnol. J. 6, 1488–1496 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. Sun, B., Zhao, Y., Wu, W., Zhao, Q., Li, G.: A superhydrophobic chip integrated with an array of medium reservoirs for long-term hanging drop spheroid culture. Acta Biomater. 135, 234–242 (2021)

    Article  CAS  PubMed  Google Scholar 

  44. Ganguli, A., Mostafa, A., Saavedra, C., Kim, Y., Le, P., Faramarzi, V., Feathers, R.W., Berger, J., Ramos-Cruz, K.P., Adeniba, O., Diaz, G.J.P., Drnevich, J., Wright, C.L., Hernandez, A.G., Lin, W., Smith, A.M., Kosari, F., Vasmatzis, G., Anastasiadis, P.Z., Bashir, R.: Three-dimensional microscale hanging drop arrays with geometric control for drug screening and live tissue imaging. Sci. Adv. 7(17), 1323 (2021)

    Article  Google Scholar 

  45. Kim, H., Roh, H., Kim, H., Park, J.K.: Droplet contact-based spheroid transfer technique as a multi-step assay tool for spheroid arrays. Lab Chip 21, 4155–4165 (2021)

    Article  CAS  PubMed  Google Scholar 

  46. Costa, E.C., de Melo-Diogo, D., Moreira, A.F., Carvalho, M.P., Correia, I.J.: Spheroids formation on non-adhesive surfaces by liquid overlay technique: considerations and practical approaches. Biotechnol. J. 13, 1700417 (2018)

    Article  Google Scholar 

  47. Dalen, H., Burki, H.: Some observations on the three-dimensional growth of L5178Y cell colonies in soft agar culture. Exp. Cell Res. 65, 433–438 (1971)

    Article  CAS  PubMed  Google Scholar 

  48. Su, G., Zhao, Y., Wei, J., Han, J., Chen, L., **ao, Z., Chen, B., Dai, J.: The effect of forced growth of cells into 3D spheres using low attachment surfaces on the acquisition of stemness properties. Biomaterials 34, 3215–3222 (2013)

    Article  CAS  PubMed  Google Scholar 

  49. Kuroda, Y., Wakao, S., Kitada, M., Murakami, T., Nojima, M., Dezawa, M.: Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat. Protoc. 8, 1391–1415 (2013)

    Article  PubMed  Google Scholar 

  50. Pereira, P.M.R., Berisha, N., Bhupathiraju, N., Fernandes, R., Tome, J.P.C., Drain, C.M.: Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers. PLoS ONE 12, e0177737 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bhang, S.H., Cho, S.W., La, W.G., Lee, T.J., Yang, H.S., Sun, A.Y., Baek, S.H., Rhie, J.W., Kim, B.S.: Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials 32, 2734–2747 (2011)

    Article  CAS  PubMed  Google Scholar 

  52. Massai, D., Isu, G., Madeddu, D., Cerino, G., Falco, A., Frati, C., Gallo, D., Deriu, M.A., Labate, F.D., G., Quaini, F., Audenino, A., Morbiducci, U.: A versatile bioreactor for dynamic suspension cell culture application to the culture of cancer cell spheroids. PLoS ONE 11, 0154610 (2016)

    Article  Google Scholar 

  53. Shin, H.S., Lee, S., Hong, H.J., Lim, Y.C., Koh, W.G., Lim, J.Y.: Stem cell properties of human clonal salivary gland stem cells are enhanced by three-dimensional priming culture in nanofibrous microwells. Stem Cell Res. Ther. 9, 74 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shin, H.S., Hong, H.J., Koh, W.G., Lim, J.Y.: Organotypic 3D culture in nanoscaffold microwells supports salivary gland stem-cell-based organization. ACS Biomater. Sci. Eng. 4, 4311–4320 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ip, B.C., Leary, E., Knorlein, B., Reich, D., Van, V., Manning, J., Morgan, J.R.: 3D Microtissues mimic the architecture, estradiol synthesis, and gap junction intercellular communication of the avascular granulosa. Toxicol. Sci. 186, 29–42 (2022)

    Article  CAS  PubMed  Google Scholar 

  56. Prince, E., Kheiri, S., Wang, Y., Xu, F., Cruickshank, J., Topolskaia, V., Tao, H., Young, E.W.K., McGuigan, A.P., Cescon, D.W., Kumacheva, E.: Microfluidic arrays of breast tumor spheroids for drug screening and personalized cancer therapies. Adv. Healthc. Mater 11, e2101085 (2022)

    Article  PubMed  Google Scholar 

  57. Torisawa, Y.S., Chueh, B.H., Huh, D., Ramamurthy, P., Roth, T.M., Barald, K.F., Takayama, S.: Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device. Lab Chip 7, 770–776 (2007)

    Article  CAS  PubMed  Google Scholar 

  58. Patra, B., Chen, Y.H., Peng, C.C., Lin, S.C., Lee, C.H., Tung, Y.C.: A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis. Biomicrofluidics 7, 54114 (2013)

    Article  PubMed  Google Scholar 

  59. Ruppen, J., Cortes-Dericks, L., Marconi, E., Karoubi, G., Schmid, R.A., Peng, R., Marti, T.M., Guenat, O.T.: A microfluidic platform for chemoresistive testing of multicellular pleural cancer spheroids. Lab Chip 14, 1198–1205 (2014)

    Article  CAS  PubMed  Google Scholar 

  60. Kang, S.-M.: Recent advances in microfluidic-based microphysiological systems. BioChip J. 16, 13–26 (2022)

    Article  CAS  Google Scholar 

  61. Kim, C., Chung, S., Kim, Y.E., Lee, K.S., Lee, S.H., Oh, K.W., Kang, J.Y.: Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid. Lab Chip 11, 246–252 (2011)

    Article  CAS  PubMed  Google Scholar 

  62. Ronteix, G., Jain, S., Angely, C., Cazaux, M., Khazen, R., Bousso, P., Baroud, C.N.: High resolution microfluidic assay and probabilistic modeling reveal cooperation between T cells in tumor killing. Nat. Commun. 13, 3111 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Segers, V.F., Lee, R.T.: Stem-cell therapy for cardiac disease. Nature 451, 937–942 (2008)

    Article  CAS  PubMed  Google Scholar 

  64. Lagasse, E., Connors, H., Al-Dhalimy, M., Reitsma, M., Dohse, M., Osborne, L., Wang, X., Finegold, M., Weissman, I.L., Grompe, M.: Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6, 1229–1234 (2000)

    Article  CAS  PubMed  Google Scholar 

  65. Suryaprakash, S., Lao, Y.-H., Cho, H.-Y., Li, M., Ji, H.Y., Shao, D., Hu, H., Quek, C.H., Huang, D., Mintz, R.L., Bagó, J.R., Hingtgen, S.D., Lee, K.-B., Leong, K.W.: Engineered mesenchymal stem cell/nanomedicine spheroid as an active drug delivery platform for combinational glioblastoma therapy. Nano Lett. 19, 1701–1705 (2019)

    Article  CAS  PubMed  Google Scholar 

  66. Yap, K.K., Dingle, A.M., Palmer, J.A., Dhillon, R.S., Lokmic, Z., Penington, A.J., Yeoh, G.C., Morrison, W.A., Mitchell, G.M.: Enhanced liver progenitor cell survival and differentiation in vivo by spheroid implantation in a vascularized tissue engineering chamber. Biomaterials 34, 3992–4001 (2013)

    Article  CAS  PubMed  Google Scholar 

  67. Lin, Y.-J., Lee, Y.-W., Chang, C.-W., Huang, C.-C.: 3D Spheroids of Umbilical Cord Blood MSC-Derived Schwann Cells Promote Peripheral Nerve Regeneration. Front. Cell Dev. Biol. 8, 604946 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ko, J.Y., Park, J.W., Kim, J., Im, G.I.: Characterization of adipose-derived stromal/stem cell spheroids versus single-cell suspension in cell survival and arrest of osteoarthritis progression. J. Biomed. Mater. Res. A 109, 869–878 (2021)

    Article  CAS  PubMed  Google Scholar 

  69. Li, L.K., Huang, W.C., Hsueh, Y.Y., Yamauchi, K., Olivares, N., Davila, R., Fang, J., Ding, X., Zhao, W., Soto, J., Hasani, M., Novitch, B., Li, S.: Intramuscular delivery of neural crest stem cell spheroids enhances neuromuscular regeneration after denervation injury. Stem Cell Res. Ther. 13, 205 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zimmermann, J.A., McDevitt, T.C.: Pre-conditioning mesenchymal stromal cell spheroids for immunomodulatory paracrine factor secretion. Cytotherapy 16, 331–345 (2014)

    Article  CAS  PubMed  Google Scholar 

  71. Xu, Y., Shi, T., Xu, A., Zhang, L.: 3D spheroid culture enhances survival and therapeutic capacities of MSC s injected into ischemic kidney. J. Cell Mol. Med. 20, 1203–1213 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Whitehead, J., Griffin, K.H., Gionet-Gonzales, M., Vorwald, C.E., Cinque, S.E., Leach, J.K.: Hydrogel mechanics are a key driver of bone formation by mesenchymal stromal cell spheroids. Biomaterials 269, 120607 (2021)

    Article  CAS  PubMed  Google Scholar 

  73. Yang, W.Y., Chen, L.C., Jhuang, Y.T., Lin, Y.J., Hung, P.Y., Ko, Y.C., Tsai, M.Y., Lee, Y.W., Hsu, L.W., Yeh, C.K., Hsu, H.H., Huang, C.C.: Injection of hybrid 3D spheroids composed of podocytes, mesenchymal stem cells, and vascular endothelial cells into the renal cortex improves kidney function and replenishes glomerular podocytes. Bioeng. Trans. Med. 6, e10212 (2021)

    Article  CAS  Google Scholar 

  74. Genovese, P., Patel, A., Ziemkiewicz, N., Paoli, A., Bruns, J., Case, N., Zustiak, S.P., Garg, K.: Co-delivery of fibrin-laminin hydrogel with mesenchymal stem cell spheroids supports skeletal muscle regeneration following trauma. J. Tissue Eng. Regen. Med. 15, 1131–1143 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hsu, S.H., Hsieh, P.S.: Self-assembled adult adipose-derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model. Wound Repair Regen 23, 57–64 (2015)

    Article  PubMed  Google Scholar 

  76. Ezquer, F., Morales, P., Quintanilla, M.E., Santapau, D., Lespay-Rebolledo, C., Ezquer, M., Herrera-Marschitz, M., Israel, Y.: Intravenous administration of anti-inflammatory mesenchymal stem cell spheroids reduces chronic alcohol intake and abolishes binge-drinking. Sci. Rep. 8, 4325 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  77. Friedrich, J., Seidel, C., Ebner, R., Kunz-Schughart, L.A.: Spheroid-based drug screen: considerations and practical approach. Nat. Protoc. 4, 309–324 (2009)

    Article  CAS  PubMed  Google Scholar 

  78. Ranganath, S.H., Levy, O., Inamdar, M.S., Karp, J.M.: Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10, 244–258 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Velasco, V., Shariati, S.A., Esfandyarpour, R.: Microtechnology-based methods for organoid models. Microsyst. Nanoeng. 6, 76 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Leedale, J.A., Kyffin, J.A., Harding, A.L., Colley, H.E., Murdoch, C., Sharma, P., Williams, D.P., Webb, S.D., Bearon, R.N.: Multiscale modelling of drug transport and metabolism in liver spheroids. Interface Focus 10, 20190041 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  81. Almazroo, O.A., Miah, M.K., Venkataramanan, R.: Drug Metabolism in the Liver. Clin. Liver Dis. 21, 1–20 (2017)

    Article  PubMed  Google Scholar 

  82. Huang, D., Zhang, X., Fu, X., Zu, Y., Sun, W., Zhao, Y.: Liver spheroids on chips as emerging platforms for drug screening. Eng. Regen. 2, 246–256 (2022)

    Google Scholar 

  83. Bhise, N.S., Manoharan, V., Massa, S., Tamayol, A., Ghaderi, M., Miscuglio, M., Lang, Q., Shrike Zhang, Y., Shin, S.R., Calzone, G., Annabi, N., Shupe, T.D., Bishop, C.E., Atala, A., Dokmeci, M.R., Khademhosseini, A.: A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8, 014101 (2016)

    Article  PubMed  Google Scholar 

  84. Foster, A.J., Chouhan, B., Regan, S.L., Rollison, H., Amberntsson, S., Andersson, L.C., Srivastava, A., Darnell, M., Cairns, J., Lazic, S.E., Jang, K.J., Petropolis, D.B., Kodella, K., Rubins, J.E., Williams, D., Hamilton, G.A., Ewart, L., Morgan, P.: Integrated in vitro models for hepatic safety and metabolism: evaluation of a human Liver-Chip and liver spheroid. Arch. Toxicol. 93, 1021–1037 (2019)

    Article  CAS  PubMed  Google Scholar 

  85. Lee, G., Kim, H., Park, J.Y., Kim, G., Han, J., Chung, S., Yang, J.H., Jeon, J.S., Woo, D.H., Han, C., Kim, S.K., Park, H.J., Kim, J.H.: Generation of uniform liver spheroids from human pluripotent stem cells for imaging-based drug toxicity analysis. Biomaterials 269, 120529 (2021)

    Article  CAS  PubMed  Google Scholar 

  86. Choi, N.Y., Lee, M.-Y., Jeong, S.: Recent Advances in 3D-Cultured Brain Tissue Models Derived from Human iPSCs. BioChip Journal, (2022).

  87. Lee, H.K., Velazquez Sanchez, C., Chen, M., Morin, P.J., Wells, J.M., Hanlon, E.B., **a, W.: Three dimensional human neuro-spheroid model of alzheimer’s disease based on differentiated induced pluripotent stem cells. PLoS ONE 11, e0163072 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tuffin, J., Chesor, M., Kuzmuk, V., Johnson, T., Satchell, S.C., Welsh, G.I., Saleem, M.A.: GlomSpheres as a 3D co-culture spheroid model of the kidney glomerulus for rapid drug-screening. Commun. Biol. 4, 1–14 (2021)

    Article  Google Scholar 

  89. **itore, P., Sasidharan, K., Ekstrand, M., Prill, S., Linden, D., Romeo, S.: Human Multilineage 3D Spheroids as a Model of Liver Steatosis and Fibrosis. Int. J. Mol. Sci. 20, 1629 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lau, A.N., Vander Heiden, M.G.: Metabolism in the Tumor Microenvironment. Annu. Rev. Cancer Biol. 4(4), 17–40 (2020)

    Article  Google Scholar 

  91. Nath, S., Devi, G.R.: Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol. Ther. 163, 94–108 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zanoni, M., Piccinini, F., Arienti, C., Zamagni, A., Santi, S., Polico, R., Bevilacqua, A., Tesei, A.: 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci. Rep. 6, 1–11 (2016)

    Article  Google Scholar 

  93. Bae, J., Han, S., Park, S.: Recent Advances in 3D Bioprinted Tumor Microenvironment. BioChip J. 14, 137–147 (2020)

    Article  CAS  Google Scholar 

  94. LaBarbera, D.V., Reid, B.G., Yoo, B.H.: The multicellular tumor spheroid model for high-throughput cancer drug discovery. Expert Opin. Drug. Discov. 7, 819–830 (2012)

    Article  CAS  PubMed  Google Scholar 

  95. Lee, K.H., Kim, T.H.: Recent advances in multicellular tumor spheroid generation for drug screening. Biosensors (Basel) 11, 445 (2021)

    Article  CAS  PubMed  Google Scholar 

  96. Li, Y., Kumacheva, E.: Hydrogel microenvironments for cancer spheroid growth and drug screening. Sci. Adv. 4, eaas8998 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gunti, S., Hoke, A.T.K., Vu, K.P., London, N.R., Jr.: Organoid and spheroid tumor models: techniques and applications. Cancers (Basel) 13, 874 (2021)

    Article  CAS  PubMed  Google Scholar 

  98. Boucherit, N., Gorvel, L., Olive, D.: 3D Tumor models and their use for the testing of immunotherapies. Front. Immunol. 11, 603640 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stock, K., Estrada, M.F., Vidic, S., Gjerde, K., Rudisch, A., Santo, V.E., Barbier, M., Blom, S., Arundkar, S.C., Selvam, I., Osswald, A., Stein, Y., Gruenewald, S., Brito, C., van Weerden, W., Rotter, V., Boghaert, E., Oren, M., Sommergruber, W., Chong, Y., de Hoogt, R., Graeser, R.: Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery. Sci. Rep. 6, 28951 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yip, D., Cho, C.H.: A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing. Biochem. Biophys. Res. Commun. 433, 327–332 (2013)

    Article  CAS  PubMed  Google Scholar 

  101. Lu, S., Cuzzucoli, F., Jiang, J., Liang, L.G., Wang, Y., Kong, M., Zhao, X., Cui, W., Li, J., Wang, S.: Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing. Lab Chip 18, 3379–3392 (2018)

    Article  CAS  PubMed  Google Scholar 

  102. Skardal, A., Devarasetty, M., Rodman, C., Atala, A., Soker, S.: Liver-tumor hybrid organoids for modeling tumor growth and drug response in vitro. Ann. Biomed. Eng. 43, 2361–2373 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  103. Song, Y., Kim, S.H., Kim, K.M., Choi, E.K., Kim, J., Seo, H.R.: Activated hepatic stellate cells play pivotal roles in hepatocellular carcinoma cell chemoresistance and migration in multicellular tumor spheroids. Sci. Rep. 6, 36750 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, Y., Sun, W., Kang, L., Wang, Y., Zhang, M., Zhang, H., Hu, P.: Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions. Analyst 144, 4233–4240 (2019)

    Article  CAS  PubMed  Google Scholar 

  105. Barrera-Rodriguez, R., Fuentes, J.M.: Multidrug resistance characterization in multicellular tumour spheroids from two human lung cancer cell lines. Cancer Cell Int. 15, 47 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  106. Huber, J.M., Amann, A., Koeck, S., Lorenz, E., Kelm, J.M., Obexer, P., Zwierzina, H., Gamerith, G.: Evaluation of assays for drug efficacy in a three-dimensional model of the lung. J. Cancer Res. Clin. Oncol. 142, 1955–1966 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Longati, P., Jia, X., Eimer, J., Wagman, A., Witt, M.R., Rehnmark, S., Verbeke, C., Toftgard, R., Lohr, M., Heuchel, R.L.: 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer 13, 95 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wen, Z., Liao, Q., Hu, Y., You, L., Zhou, L., Zhao, Y.: A spheroid-based 3-D culture model for pancreatic cancer drug testing, using the acid phosphatase assay. Braz. J. Med. Biol. Res. 46, 634–642 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yeon, S., Da No, Y., Lee, S.H., Nam, S.W., Oh, I.H., Lee, J., Kuh, H.J.: Application of concave microwells to pancreatic tumor spheroids enabling anticancer drug evaluation in a clinically relevant drug resistance model. PLoS ONE 8, e73345 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hou, S., Tiriac, H., Sridharan, B.P., Scampavia, L., Madoux, F., Seldin, J., Souza, G.R., Watson, D., Tuveson, D., Spicer, T.P.: Advanced development of primary pancreatic organoid tumor models for high-throughput phenotypic drug screening. SLAS Discov. 23, 574–584 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wong, C.W., Han, H.W., Tien, Y.W., Hsu, S.H.: Biomaterial substrate-derived compact cellular spheroids mimicking the behavior of pancreatic cancer and microenvironment. Biomaterials 213, 119202 (2019)

    Article  CAS  PubMed  Google Scholar 

  112. Gong, X., Lin, C., Cheng, J., Su, J., Zhao, H., Liu, T., Wen, X., Zhao, P.: Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing. PLoS ONE 10, e0130348 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  113. Yu, L., Chen, M.C., Cheung, K.C.: Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Lab Chip 10, 2424–2432 (2010)

    Article  CAS  PubMed  Google Scholar 

  114. Sun, Q., Tan, S.H., Chen, Q.S., Ran, R., Hui, Y., Chen, D., Zhao, C.X.: Microfluidic formation of coculture tumor spheroids with stromal cells as a novel 3D tumor model for drug testing. ACS Biomater. Sci. Eng. 4, 4425–4433 (2018)

    Article  CAS  PubMed  Google Scholar 

  115. Ho, W.Y., Yeap, S.K., Ho, C.L., Rahim, R.A., Alitheen, N.B.: Development of Multicellular Tumor Spheroid (MCTS) Culture from Breast Cancer Cell and a High Throughput Screening Method Using the MTT Assay. Plos One 7, (2012).

  116. Chen, Y., Gao, D., Liu, H., Lin, S., Jiang, Y.: Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Anal. Chim. Acta 898, 85–92 (2015)

    Article  CAS  PubMed  Google Scholar 

  117. Folkesson, E., Niederdorfer, B., Nakstad, V.T., Thommesen, L., Klinkenberg, G., Lægreid, A., Flobak, Å.: High-throughput screening reveals higher synergistic effect of MEK inhibitor combinations in colon cancer spheroids. Sci. Rep. 10, 1–14 (2020)

    Google Scholar 

  118. Hoffmann, O.I., Ilmberger, C., Magosch, S., Joka, M., Jauch, K.W., Mayer, B.: Impact of the spheroid model complexity on drug response. J. Biotechnol. 205, 14–23 (2015)

    Article  CAS  PubMed  Google Scholar 

  119. Däster, S., Amatruda, N., Calabrese, D., Ivanek, R., Turrini, E., Droeser, R.A., Zajac, P., Fimognari, C., Spagnoli, G.C., Iezzi, G.: Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment. Oncotarget 8, 1725 (2017)

    Article  PubMed  Google Scholar 

  120. Alzeeb, G., Arzur, D., Trichet, V., Talagas, M., Corcos, L., Le Jossic-Corcos, C.: Gastric cancer cell death analyzed by live cell imaging of spheroids. Sci. Rep. 12, 1488 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Balmana, M., Diniz, F., Feijao, T., Barrias, C.C., Mereiter, S., Reis, C.A.: Analysis of the Effect of Increased alpha2,3-Sialylation on RTK Activation in MKN45 Gastric Cancer Spheroids Treated with Crizotinib. Int. J. Mol. Sci. 21, 722 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jang, M., Koh, I., Lee, S.J., Cheong, J.H., Kim, P.: Droplet-based microtumor model to assess cell-ECM interactions and drug resistance of gastric cancer cells. Sci. Rep. 7, 41541 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tofani, L.B., Abriata, J.P., Luiz, M.T., Marchetti, J.M., Swiech, K.: Establishment and characterization of an in vitro 3D ovarian cancer model for drug screening assays. Biotechnol. Prog. 36, e3034 (2020)

    Article  CAS  PubMed  Google Scholar 

  124. Raghavan, S., Ward, M.R., Rowley, K.R., Wold, R.M., Takayama, S., Buckanovich, R.J., Mehta, G.: Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays. Gynecol. Oncol. 138, 181–189 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tofani, L.B., Sousa, L.O., Luiz, M.T., Abriata, J.P., Marchetti, J.M., Leopoldino, A.M., Swiech, K.: Generation of a three-dimensional in vitro ovarian cancer co-culture model for drug screening assays. J. Pharm. Sci. 110, 2629–2636 (2021)

    Article  CAS  PubMed  Google Scholar 

  126. Gunay, G., Kirit, H.A., Kamatar, A., Baghdasaryan, O., Hamsici, S., Acar, H.: The effects of size and shape of the ovarian cancer spheroids on the drug resistance and migration. Gynecol. Oncol. 159, 563–572 (2020)

    Article  CAS  PubMed  Google Scholar 

  127. Filipiak-Duliban, A., Brodaczewska, K., Kajdasz, A., Kieda, C.: Spheroid culture differentially affects cancer cell sensitivity to drugs in melanoma and RCC models. Int. J. Mol. Sci. 23, 1166 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. An, H.J., Kim, H.S., Kwon, J.A., Song, J., Choi, I.: Adjustable and versatile 3D tumor spheroid culture platform with interfacial elastomeric wells. ACS Appl. Mater. Interfaces 12, 6924–6932 (2020)

    Article  CAS  PubMed  Google Scholar 

  129. Rausch, M., Blanc, L., De Souza Silva, O., Dormond, O., Griffioen, A.W., Nowak-Sliwinska, P.: Characterization of renal cell carcinoma heterotypic 3D co-cultures with immune cell subsets. Cancers (Basel) 13, 2551 (2021)

    Article  CAS  PubMed  Google Scholar 

  130. Ho, V.H., Guo, W.M., Huang, C.L., Ho, S.F., Chaw, S.Y., Tan, E.Y., Ng, K.W., Loo, J.S.: Manipulating magnetic 3D spheroids in hanging drops for applications in tissue engineering and drug screening. Adv. Healthc. Mater. 2, 1430–1434 (2013)

    Article  CAS  PubMed  Google Scholar 

  131. Brodaczewska, K.K., Bielecka, Z.F., Maliszewska-Olejniczak, K., Szczylik, C., Porta, C., Bartnik, E., Czarnecka, A.M.: Metastatic renal cell carcinoma cells growing in 3D on polyDlysine or laminin present a stemlike phenotype and drug resistance. Oncol. Rep. 42, 1878–1892 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Khademhosseini, A., Langer, R.: A decade of progress in tissue engineering. Nat. Protoc. 11, 1775–1781 (2016)

    Article  CAS  PubMed  Google Scholar 

  133. Kim, M., Hwang, D.G., Jang, J.: 3D pancreatic tissue modeling in vitro: advances and prospects. BioChip J. 14, 84–99 (2020)

    Article  CAS  Google Scholar 

  134. Chen, G.P., Ushida, T., Tateishi, T.: Scaffold design for tissue engineering. Macromol. Biosci. 2, 67–77 (2002)

    Article  CAS  Google Scholar 

  135. Tan, Y., Richards, D., Coyle, R.C., Yao, J., Xu, R., Gou, W., Wang, H., Menick, D.R., Tian, B., Mei, Y.: Cell number per spheroid and electrical conductivity of nanowires influence the function of silicon nanowired human cardiac spheroids. Acta Biomater. 51, 495–504 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee, H.J., Koh, W.G.: Hydrogel micropattern-incorporated fibrous scaffolds capable of sequential growth factor delivery for enhanced osteogenesis of hMSCs. ACS Appl. Mater. Interfaces 6, 9338–9348 (2014)

    Article  CAS  PubMed  Google Scholar 

  137. Heidariyan, Z., Ghanian, M.H., Ashjari, M., Farzaneh, Z., Najarasl, M., Larijani, M.R., Piryaei, A., Vosough, M., Baharvand, H.: Efficient and cost-effective generation of hepatocyte-like cells through microparticle-mediated delivery of growth factors in a 3D culture of human pluripotent stem cells. Biomaterials 159, 174–188 (2018)

    Article  CAS  PubMed  Google Scholar 

  138. Guvendiren, M., Burdick, J.A.: Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr. Opin. Biotechnol. 24, 841–846 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wei, J., **a, T., Chen, W., Ran, P., Chen, M., Li, X.: Glucose and lipid metabolism screening models of hepatocyte spheroids after culture with injectable fiber fragments. J. Tissue Eng. Regen. Med. 14, 774–788 (2020)

    Article  CAS  PubMed  Google Scholar 

  140. Ahmad, T., Lee, J., Shin, Y.M., Shin, H.J., Madhurakat Perikamana, S.K., Park, S.H., Kim, S.W., Shin, H.: Hybrid-spheroids incorporating ECM like engineered fragmented fibers potentiate stem cell function by improved cell/cell and cell/ECM interactions. Acta Biomater. 64, 161–175 (2017)

    Article  CAS  PubMed  Google Scholar 

  141. Yamada, M., Hori, A., Sugaya, S., Yajima, Y., Utoh, R., Yamato, M., Seki, M.: Cell-sized condensed collagen microparticles for preparing microengineered composite spheroids of primary hepatocytes. Lab Chip 15, 3941–3951 (2015)

    Article  CAS  PubMed  Google Scholar 

  142. Mansouri, M., Beemer, S., Kothapalli, C.R., Rhoades, T., Fodor, P.S., Das, D., Leipzig, N.D.: Generation of oxygenating fluorinated methacrylamide chitosan microparticles to increase cell survival and function in large liver spheroids. ACS Appl. Mater. Interfaces 14, 4899–4913 (2022)

    Article  CAS  PubMed  Google Scholar 

  143. Baraniak, P.R., Cooke, M.T., Saeed, R., Kinney, M.A., Fridley, K.M., McDevitt, T.C.: Stiffening of human mesenchymal stem cell spheroid microenvironments induced by incorporation of gelatin microparticles. J. Mech. Behav. Biomed. Mater. 11, 63–71 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rathnam, C., Yang, L., Castro-Pedrido, S., Luo, J., Cai, L., Lee, K.B.: Hybrid SMART spheroids to enhance stem cell therapy for CNS injuries. Sci. Adv. 7, 2281 (2021)

    Article  Google Scholar 

  145. Cui, H., Wang, X., Wesslowski, J., Tronser, T., Rosenbauer, J., Schug, A., Davidson, G., Popova, A.A., Levkin, P.A.: Assembly of multi-spheroid cellular architectures by programmable droplet merging. Adv. Mater. 33, e2006434 (2021)

    Article  PubMed  Google Scholar 

  146. Polonchuk, L., Surija, L., Lee, M.H., Sharma, P., Ming, L.C., et al.: Towards engineering heart tissues from bioprinted cardiac spheroids. Biofabrication 13, 045009 (2021)

    Article  CAS  Google Scholar 

  147. Kim, T.Y., Kofron, C.M., King, M.E., Markes, A.R., Okundaye, A.O., Qu, Z.L., Mende, U., Choi, B.R.: Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts. PLoS ONE 13, e0196714 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  148. Lindberg, G.C.J., Cui, X., Durham, M., Veenendaal, L., Schon, B.S., Hooper, G.J., Lim, K.S., Woodfield, T.B.F.: Probing multicellular tissue fusion of cocultured spheroids-A 3D-bioassembly model. Adv. Sci. (Weinh) 8, e2103320 (2021)

    Article  PubMed  Google Scholar 

  149. Tran, C., Damaser, M.S.: Stem cells as drug delivery methods: Application of stem cell secretome for regeneration. Adv. Drug Deliv. Rev. 82–83, 1–11 (2015)

    Article  PubMed  Google Scholar 

  150. Chang, C., Yan, J., Yao, Z.C., Zhang, C., Li, X.W., Mao, H.Q.: Effects of mesenchymal stem cell-derived paracrine signals and their delivery strategies. Adv. Healthc. Mater. 10, 2001689 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Carter, K., Lee, H.J., Na, K.S., Fernandes-Cunha, G.M., Blanco, I.J., Djalilian, A., Myung, D.: Characterizing the impact of 2D and 3D culture conditions on the therapeutic effects of human mesenchymal stem cell secretome on corneal wound healing in vitro and ex vivo. Acta Biomater. 99, 247–257 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  152. **e, L., Mao, M., Zhou, L., Zhang, L., Jiang, B.: Signal factors secreted by 2D and spheroid mesenchymal stem cells and by cocultures of mesenchymal stem cells derived microvesicles and retinal photoreceptor neurons. Stem Cells Int. 2017, 2730472 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kumar, L.P., Kandoi, S., Misra, R., Vijayalakshmi, S., Rajagopal, K., Verma, R.S.: The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 46, 1–9 (2019)

    Article  Google Scholar 

  154. Fernandes-Cunha, G.M., Na, K.S., Putra, I., Lee, H.J., Hull, S., Cheng, Y.C., Blanco, I.J., Eslani, M., Djalilian, A.R., Myung, D.: Corneal wound healing effects of mesenchymal stem cell secretome delivered within a viscoelastic gel carrier. Stem Cells Transl. Med. 8, 478–489 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dinh, P.C., Paudel, D., Brochu, H., Popowski, K.D., Gracieux, M.C., Cores, J., Huang, K., Hensley, M.T., Harrell, E., Vandergriff, A.C., George, A.K., Barrio, R.T., Hu, S., Allen, T.A., Blackburn, K., Caranasos, T.G., Peng, X., Schnabel, L.V., Adler, K.B., Lobo, L.J., Goshe, M.B., Cheng, K.: Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat. Commun. 11, 1064 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Joshi, J., Abnavi, M.D., Kothapalli, C.R.: Synthesis and secretome release by human bone marrow mesenchymal stem cell spheroids within three-dimensional collagen hydrogels: Integrating experiments and modelling. J. Tissue Eng. Regen. Med. 13, 1923–1937 (2019)

    Article  CAS  PubMed  Google Scholar 

  157. Miranda, J.P., Camoes, S.P., Gaspar, M.M., Rodrigues, J.S., Carvalheiro, M., Barcia, R.N., Cruz, P., Cruz, H., Simoes, S., Santos, J.M.: The secretome derived from 3D-cultured umbilical cord tissue MSCs counteracts manifestations typifying rheumatoid arthritis. Front. Immunol. 10, 18 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Redondo-Castro, E., Cunningham, C.J., Miller, J., Brown, H., Allan, S.M., Pinteaux, E.: Changes in the secretome of tri-dimensional spheroid-cultured human mesenchymal stem cells in vitro by interleukin-1 priming. Stem Cell Res. Ther. 9, 11 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chouw, A., Facicilia, G., Sartika, C.R., Faried, A., Milanda, T.: Factors Influencing the Therapeutic Potential of the MSC-derived Secretome. Regen. Eng. Trans. Med. 9, 1–10 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) (grant numbers NRF-2020R1C1C1013227, 2021R1A6A1A03038996), funded by the Ministry of Science and ICT (MSIT), and the Gachon University Research Fund of 2020 (GCU-202208970001).

Funding

Ministry of Science and ICT, South Korea, NRF-2020R1C1C1013227, Hyun Jong Lee, NRF-2021R1A6A1A03038996, Hyun Jong Lee, Gachon University, GCU-202208970001, Hyun Jong Lee.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hye ** Hong or Hyun Jong Lee.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.Y., Hong, H.J. & Lee, H.J. Fabrication of Cell Spheroids for 3D Cell Culture and Biomedical Applications. BioChip J 17, 24–43 (2023). https://doi.org/10.1007/s13206-022-00086-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-022-00086-9

Keywords

Navigation