Log in

Study of the probiotic properties of Lacticaseibacillus casei subsp. casei NCIM 5752 and the optimization of whey-based media for the production of its biomass using response surface methodology

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this study, Lacticaseibacillus casei NCIM 5752, a new isolate has been explored for probiotic properties and has shown significant bile salt hydrolase activity and cholesterol-reducing activity (56.7 ± 0.27%) in the presence of bile salts. It also tested negative for the production of lecithinase and gelatinase, indicating its non-pathogenic nature. The test strain was able to tolerate pH of 2.0 and 3.0 with 63.42 and 94.7% of the cells survived after 3 h. L. casei showed auto-aggregation of 85.3% and surface hydrophobicity of 22.5% in xylene and 19.4% in hexane. Paneer whey was explored as a basic raw material for alternative media formulation for growing lactic acid bacteria. Paneer whey was found to contain lactose (4.15%), protein (0.42%), and rich in mineral content. Response surface methodology was employed to optimize the medium composition with three independent variables yeast extract (X1), dextrose (X2), and dipotassium hydrogen phosphate (X3), and the response-Y was set to biomass obtained in terms of log CFU/ml. They were supplemented to paneer whey medium for growing this strain. The second-order polynomial regression model predicted that the maximum cell mass production of 11.30 ± 0.5 log CFU/ml at optimal composition of 16.22 g/L of yeast extract, 19.31 g/L of dextrose, and 2.12 g/L of dipotassium hydrogen phosphate in paneer whey medium. Experiments were conducted to validate the RSM results, and the biomass achieved was 11.27 ± 0.50 log CFU/ml, which is in close agreement with the yield predicted by the RSM. By applying the fermentation strategy, the biomass was increased to 5.56 ± 0.34 g/L dry cell weight corresponding to 11.58 ± 0.24 log CFU/ml. The newly optimized media was significantly cost-effective and produced 26.45% more biomass than the conventional MRS media. This optimized media may find application for the large-scale biomass production of probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

Download references

Acknowledgments

The authors gratefully thank the Director of CSIR-CFTRI, Mysore, for providing facilities to carry out this work. One of the authors, MN, gratefully acknowledges RCB-DBT, New Delhi, for the award of DBT-JRF fellowship - DBT/JRF/15/AL/232. The author also thanks Mega-dairy, Mysuru, for providing paneer whey for experiments.

Funding

This work was supported by the RCB-DBT (DBT/JRF/15/AL/232) Faridabad, India.

Author information

Authors and Affiliations

Authors

Contributions

MN: Investigation, writing, editing, and reviewing, NKR: RSM experimental design and statistical analysis of the RSM data, SD: conceptualization, supervision, editing, and reviewing. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Somashekar Devappa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2586 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanjaiah, M., Rastogi, N.K. & Devappa, S. Study of the probiotic properties of Lacticaseibacillus casei subsp. casei NCIM 5752 and the optimization of whey-based media for the production of its biomass using response surface methodology. 3 Biotech 14, 49 (2024). https://doi.org/10.1007/s13205-023-03899-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03899-z

Keywords

Navigation