Log in

Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

In addition to the nutrient exchange that is promoted by the arbuscular mycorrhiza symbiosis (AMS) between plants and fungi, AMS triggers mycorrhiza-induced protection against plant pathogens. Although the induction of this protection against diverse plant pathogens has been described for several plant species, it is not clear if its onset differs among genotypes within a species. To address this, we have examined if and how this defense response is triggered by AMS in common bean and tomato. Leaflets from three different genotypes of mycorrhizal common beans and two genotypes of tomato were challenged with the pathogens Sclerotinia sclerotiorum and Xanthomonas campestris pv. vesicatoria, respectively, to determine if disease protection induced by mycorrhiza is genotype-specific. We have found that one tomato and two common bean genotypes display this type of protection, although this was not observed in Az Hig common bean and Micro-Tom tomato. These findings indicate that mycorrhiza-induced disease protection is genotype-specific for the species and genotypes included in this study. Previous work has shown that defense induced by mycorrhiza colonization is effective against foliar pathogens, suggesting the existence of a signal that must move from colonized roots to shoots. We examined the possibility that this defense response can be triggered in scions from non-mycorrhizal plants when they were grafted onto mycorrhizal rootstock. Pathogen infection assays were then performed on leaflets of both scions and rootstock, and infection damage was compared to non-grafted plants. Our results indicate that in genotypes displaying mycorrhiza-induced disease protection, scions originating from non-mycorrhizal plants acquired the ability to decrease disease symptoms when grafted onto mycorrhizal rootstocks, indicating that they are responsive to the putative signal that moves from mycorrhizal roots to the upper part of the plant to trigger disease protection. This grafting experimental system may be useful in elucidating the molecular mechanisms involved in the systemic signaling of mycorrhiza-induced defense response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrios GN (2005) Plant pathology. Elsevier Academic Press, Florida

    Google Scholar 

  • Alejo-Iturvide F, Márquez-Lucio M, Morales-Ramírez I, Vázquez-Garcidueñas MS, Olalde-Portugal V (2008) Mycorrhizal protection of chili plants challenged by Phytophthora capsici. Eur J Plant Pathol 120:13–20

    Article  Google Scholar 

  • Cameron DD, Neal AL, van Wees SCM, Tonemail J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campos-Soriano L, García-Martínez J, Segundo BS (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592

    Article  CAS  PubMed  Google Scholar 

  • Chabot S, Becard G, Piche Y (1992) Life cycle of Glomus intraradix in root organ culture. Mycology 84:315–321

    Article  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant-Microbe Interact 11(10):1017–1028

    Article  CAS  Google Scholar 

  • De Deyn G, Biere A, van der Putten W, Wagenaar R, Klironomos JN (2009) Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L. Oecologia 160:433–442

    Article  PubMed  Google Scholar 

  • Elsen A, Declerck S, De Waele D (2003) Use of root organ cultures to investigate the interaction between Glomus intraradices and Pratylenchus coffeae. Appl Environ Microbiol 69:4308–4311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    Article  CAS  PubMed  Google Scholar 

  • Fritz M, Jakobsen I, Lyngkjaer MF, Thordal-Christensen H, Pons-Kuhnemann J (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419

    Article  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1992) Influence of intergenic grafts between host and non-host legumes on the formation of vesicular-arbuscular mycorrhiza. New Phytol 120:505–508

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular–arbuscular Mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Hao Z, Fayolle L, van Tuinen D, Chatagnier O, Li X, Gianinazzi S, Gianinazzi-Pearson V (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode **phinema index involves priming of defence gene responses in grapevine. J Exp Bot 63:3657–3672

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harada T (2010) Grafting and RNA transport via phloem tissue in horticultural plants. Sci Hortic 125:545–550

    Article  CAS  Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Ocampo Bote JA, Garcia Garrido JM (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Sta Circ 347:1–32

    Google Scholar 

  • Hol WHG, Cook R (2005) An overview of arbuscular mycorrhizal fungi–nematode interactions. Basic Appl Ecol 6:489–503

    Article  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Khaosaad T, García-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    Article  CAS  Google Scholar 

  • King SR, Davis AR, Liu W, Levi A (2008) Grafting for disease resistance. Hortscience 43:1673–1676

    Google Scholar 

  • Leyns F, Cleene M, Swings J-G, Ley J (1984) The host range of the genus Xanthomonas. Bot Rev 50:308–356

    Article  Google Scholar 

  • Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the Arbuscular Mycorrhizal Fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the Class III Chitinase gene VCH3. Plant Cell Physiol 47:154–163

    Article  CAS  PubMed  Google Scholar 

  • Lingua G, D'Agostino G, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12:191–198

    Article  PubMed  Google Scholar 

  • Little TM, Hills FJ (1973) Agricultural experimentation and analysis. Wiley, New York

    Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ, Yoo BC, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2:849–857

    Article  CAS  PubMed  Google Scholar 

  • Marti E, Gisbert C, Bishop GJ, Dixon MS, Garcia-Martinez JL (2006) Genetic and physiological characterization of tomato cv. Micro-Tom. J Exp Bot 57:2037–2047

    Article  CAS  PubMed  Google Scholar 

  • Mora-Romero GA, Gonzalez-Ortiz MA, Quiroz-Figueroa F, Calderon-Vazquez CL, Medina-Godoy S, Maldonado-Mendoza I, Arroyo-Becerra A, Perez-Torres A, Alatorre-Cobos F, Sanchez F, Lopez-Meyer M (2015) PvLOX2 silencing in common bean roots impairs arbuscular mycorrhiza-induced resistance without affecting symbiosis establishment. Funct Plant Biol 42:18–30

    Article  CAS  Google Scholar 

  • Noval B, Pérez E, Martínez B, León O, Martínez-Gallardo N, Délano-Frier J (2007) Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato (Solanum lycopersicum) plants infected with necrotrophic or hemibiotrophic pathogens. Mycorrhiza 17:449–460

    Article  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcón Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defense response to phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Jung SC, López-Ráez JA, Azcón-Aguilar C (2010) Impact of Arbuscular Mycorrhizal symbiosis on plant response to biotic stress: the role of plant defence mechanisms. In: Koltai H, Kapulnik Y (eds) Arbuscular Mycorrhizas: Physiology and Function. Springer, Netherlands, pp. 193–207

    Chapter  Google Scholar 

  • Rosales-Serna R, Acosta-Gallegos JA, Muruaga-Martínez JS, Hernández-Casillas JM, Esquivel-Esquivel G, Pérez-Herrera P (2004) Variedades mejoradas de frijol del Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias. Libro Técnico no 6 SAGARPA-INIFAP, Mexico

  • Schübler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Scott JW, Harbaugh BK (1989) Micro-Tom. A miniature dwarf tomato. Florida Agr Exp Sta Circ S 370:1–6

    Google Scholar 

  • Shi T, Reeves RH, Gilichinsky DA, Friedmann EI (1997) Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 33:169–179

    Article  CAS  PubMed  Google Scholar 

  • Singh SP, Gutierrez A, Teran H (2003) Registration of indeterminate tall upright small black seeded common bean germplasmb A-55. Crop Sci 43:1887–1888

    Article  Google Scholar 

  • Smith S, Read D (1997) Mycorrhizal symbiosis, 2 edn. Academic Press, London

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampò S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    Article  CAS  Google Scholar 

  • Vos C, Claerhout S, Mkandawire R, Panis B, Waele D, Elsen A (2012a) Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354:335–345

    Article  CAS  Google Scholar 

  • Vos C, Geerinckx K, Mkandawire R, Panis B, De Waele D, Elsen A (2012b) Arbuscular mycorrhizal fungi affect both penetration and further life stage development of root-knot nematodes in tomato. Mycorrhiza 22:157–163

    Article  PubMed  Google Scholar 

  • Vos C, Van Den Broucke D, Lombi FM, De Waele D, Elsen A (2012c) Mycorrhiza-induced resistance in banana acts on nematode host location and penetration. Soil Biol Biochem 47:60–66

    Article  CAS  Google Scholar 

  • Vos CM, Tesfahun AN, Panis B, De Waele D, Elsen A (2012d) Arbuscular mycorrhizal fungi induce local and systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl Soil Ecol 61:1–6

    Article  Google Scholar 

  • Vos C et al. (2013) Mycorrhiza-induced resistance against the root–knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol Biochem 60:45–54

    Article  CAS  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • White TJ, Bruns TD, Lee TD, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp. 315–322

  • Williams B, Kabbage M, Kim H-J, Britt R, Dickman MB (2011) Tip** the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7:e1002107. doi:10.1371/journal.ppat.1002107

Download references

Acknowledgments

MLM acknowledges support from the Red de Biotecnología from the Instituto Politécnico Nacional (IPN), the Secretaría de Investigación y Posgrado-IPN (project nos. 20090463 and 20131537), and the Consejo Estatal de Ciencia y Tecnología-Sinaloa grants. MRGA, CGRG and GOMA acknowledge the Consejo Nacional de Ciencia yTecnología of México and the Programa Institucional de Formación de Investigadores (PIFI)-IPN graduate fellowships. GFH acknowledges the Institutional (IPN) and PIFI-IPN graduate fellowships. We thank Brandon Loveall of Improvence for English proofreading of the manuscript.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. López-Meyer.

Additional information

G. A. Mora-Romero and R. G. Cervantes-Gámez contributed equally to this work.

R. Salinas Pérez is deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora-Romero, G.A., Cervantes-Gámez, R.G., Galindo-Flores, H. et al. Mycorrhiza-induced protection against pathogens is both genotype-specific and graft-transmissible. Symbiosis 66, 55–64 (2015). https://doi.org/10.1007/s13199-015-0334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-015-0334-2

Keywords

Navigation