Log in

Effects of ripening on the in vitro antioxidant capacity and bioaccessibility of mango cv. ‘Ataulfo’ phenolics

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Fruit ripening induces changes that strongly affect their matrices, and consequently, the bioaccessibility/bioavailability of its phenolic compounds. Flesh from ‘slightly’ (SR), ‘moderately’ (MR) and ‘fully’ (FR) ripe ‘Ataulfo’ mangoes were physicochemically characterized, and digested in vitro to evaluate how ripening impacts the bioaccessibility/bioavailability of its phenolic compounds. Ripening increased the flesh’s pH and total soluble solids, while decreasing citric acid, malic acid and titratable acidity. MR and FR mango phenolics had higher bioaccessibility/bioavailability, which was related to a decreased starch and dietary fiber (soluble and insoluble) content. These results suggest that phenolics are strongly bound to the fruit’s matrix of SR mango, but ripening liberates them as the major polysaccharides are hydrolyzed, thus breaking covalent bonds and disrupting carbohydrate–phenolic complexes. There was also a higher release percentage in the gastric digestion phase, as compared to the intestinal. Our data showed that the bioaccessibility/bioavailability of mango phenolics depends on fruit ripening and on digestion phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AOAC International (2016) Official methods of analysis of AOAC International, 20th edn. AOAC, Rockville

    Google Scholar 

  • Bouayed J, Hoffmann L, Bohn T (2011) Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: bioaccessibility and potential uptake. Food Chem 128:14–21

    Article  CAS  PubMed  Google Scholar 

  • Cockburn DW, Koropatkin NM (2016) Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J Mol Biol 428:3230–3252

    Article  CAS  PubMed  Google Scholar 

  • Domínguez-Avila JA, Wall-Medrano A, Velderrain-Rodriguez GR, Chen CYO, Salazar-Lopez NJ, Robles-Sanchez M, Gonzalez-Aguilar GA (2017) Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct 8:15–38

    Article  PubMed  Google Scholar 

  • Domínguez-Avila JA, Villegas-Ochoa MA, Alvarez-Parrilla E, Montalvo-Gonzalez E, González-Aguilar GA (2018) Interactions between four common plant-derived phenolic acids and pectin, and its effect on antioxidant capacity. J Food Meas Charact 12:992–1004

    Article  Google Scholar 

  • Domínguez-Rosas C, Domínguez-Avila JA, Pareek S, Villegas-Ochoa MA, Ayala-Zavala JF, Yahia E, Gonzalez-Aguilar GA (2018) Content of bioactive compounds and their contribution to antioxidant capacity during ripening of pineapple (Ananas comosus L.) cv. Esmeralda. J Appl Bot Food Qual 91:61–68

    Google Scholar 

  • Esparza-Martinez FJ, Miranda-Lopez R, Guzman-Maldonado SH (2016) Effect of air-drying temperature on extractable and non-extractable phenolics and antioxidant capacity of lime wastes. Ind Crop Prod 84:1–6. https://doi.org/10.1016/j.indcrop.2016.01.043

    Article  CAS  Google Scholar 

  • Juaniz I et al (2017) Bioaccessibility of (poly)phenolic compounds of raw and cooked cardoon (Cynara cardunculus L.) after simulated gastrointestinal digestion and fermentation by human colonic microbiota (vol 32, pg 195, 2017). J Funct Foods 34:480. https://doi.org/10.1016/j.jff.2017.05.031

    Article  Google Scholar 

  • Kim H et al (2010) Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chem 121:429–436. https://doi.org/10.1016/j.foodchem.2009.12.060

    Article  CAS  Google Scholar 

  • Núñez-Gastélum J, Alvarez-Parrilla E, de la Rosa L, Martínez-Ruíz N, González-Aguilar G, Rodrigo-García J (2015) Effect of harvest date and storage duration on chemical composition, sugar and phenolic profile of ‘Golden Delicious’ apples from northwest Mexico. N Z J Crop Hortic Sci 43:214–221

    Article  CAS  Google Scholar 

  • Ornelas-Paz JDJ, Failla ML, Yahia EM, Gardea-Bejar A (2008a) Impact of the stage of ripening and dietary fat on in vitro bioaccessibility of β-carotene in ‘Ataulfo’ mango. J Agric Food Chem 56:1511–1516

    Article  CAS  Google Scholar 

  • Ornelas-Paz JDJ, Yahia EM, Gardea AA (2008b) Changes in external and internal color during postharvest ripening of ‘Manila’ and ‘Ataulfo’ mango fruit and relationship with carotenoid content determined by liquid chromatography–APcI+-time-of-flight mass spectrometry. Postharvest Biol Technol 50:145–152

    Article  CAS  Google Scholar 

  • Palafox-Carlos H, Ayala-Zavala JF, González-Aguilar GA (2011) The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J Food Sci 76:R6–R15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palafox-Carlos H, Gil-Chavez J, Sotelo-Mundo RR, Namiesnik J, Gorinstein S, Gonzalez-Aguilar GA (2012a) Antioxidant interactions between major phenolic compounds found in ‘Ataulfo’ mango pulp: chlorogenic, gallic, protocatechuic and vanillic acids. Molecules 17:12657–12664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palafox-Carlos H, Yahia E, Islas-Osuna MA, Gutierrez-Martinez P, Robles-Sánchez M, González-Aguilar G (2012b) Effect of ripeness stage of mango fruit (Mangifera indica L. cv. Ataulfo) on physiological parameters and antioxidant activity. Sci Hortic 135:7–13

    Article  CAS  Google Scholar 

  • Palafox-Carlos H, Yahia EM, Gonzalez-Aguilar GA (2012c) Identification and quantification of major phenolic compounds from mango (Mangifera indica, cv. Ataulfo) fruit by HPLC-DAD-MS/MS-ESI and their individual contribution to the antioxidant activity during ripening. Food Chem 135:105–111

    Article  CAS  Google Scholar 

  • Palafox-Carlos H, Contreras-Vergara C, Muhlia-Almazan A, Islas-Osuna M, Gonzalez-Aguilar G (2014) Expression and enzymatic activity of phenylalanine ammonia-lyase and p-coumarate 3-hydroxylase in mango (Mangifera indica ‘Ataulfo’) during ripening. Genet Mol Res 13:3850–3858

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Jiménez J, Díaz-Rubio ME, Saura-Calixto F (2013) Non-extractable polyphenols, a major dietary antioxidant: occurrence, metabolic fate and health effects. Nutr Res Rev 26:118–129

    Article  CAS  PubMed  Google Scholar 

  • Pineda-Vadillo C et al (2016) vitro digestion of dairy and egg products enriched with grape extracts: effect of the food matrix on polyphenol bioaccessibility and antioxidant activity. Food Res Int 88:284–292

    Article  CAS  Google Scholar 

  • Quirós-Sauceda A et al (2014a) Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion. Food Funct 5:1063–1072

    Article  PubMed  Google Scholar 

  • Quirós-Sauceda AE, Ayala-Zavala JF, Sáyago-Ayerdi SG, Vélez-de La Rocha R, Sañudo-Barajas A, González-Aguilar GA (2014b) Added dietary fiber reduces the antioxidant capacity of phenolic compounds extracted from tropical fruit. J Appl Bot Food Qual 87:227–233

    Google Scholar 

  • Rodríguez-Roque MJ, de Ancos B, Sánchez-Moreno C, Cano MP, Elez-Martínez P, Martín-Belloso O (2015) Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. J Funct Foods 14:33–43

    Article  CAS  Google Scholar 

  • Salazar-Lopez NJ, Astiazaran-Garcia H, Gonzalez-Aguilar GA, Loarca-Pina G, Ezquerra-Brauer JM, Avila JAD, Robles-Sanchez M (2017) Ferulic acid on glucose dysregulation, dyslipidemia, and inflammation in diet-induced obese rats: an integrated study. Nutrients 9:675

    Article  CAS  PubMed Central  Google Scholar 

  • Samalova M, Mélida H, Vilaplana F, Bulone V, Soanes DM, Talbot NJ, Gurr SJ (2016) The β-1,3-glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressorium-mediated plant infection. Cell Microbiol 19:e12659. https://doi.org/10.1111/cmi.12659

    Article  CAS  PubMed Central  Google Scholar 

  • Saura-Calixto F (2018) The story of the introduction of non-extractable polyphenols into polyphenol research: origin, development and perspectives, chap 1. In: Saura-Calixto F, Pérez-Jiménez J (eds) Non-extractable polyphenols and carotenoids: importance in human nutrition and health. Royal Society of Chemistry, UK, pp 1–16. https://doi.org/10.1039/9781788013208-00001

    Chapter  Google Scholar 

  • Saura-Calixto F, García-Alonso A, Goni I, Bravo L (2000) In vitro determination of the indigestible fraction in foods: an alternative to dietary fiber analysis. J Agric Food Chem 48:3342–3347

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Kaur L, Singh H (2013a) Food microstructure and starch digestion. Adv Food Nutr Res 70:137–179

    Article  CAS  PubMed  Google Scholar 

  • Singh Z, Singh RK, Sane VA, Nath P (2013b) Mango: postharvest biology and biotechnology. Crit Rev Plant Sci 32:217–236. https://doi.org/10.1080/07352689.2012.743399

    Article  CAS  Google Scholar 

  • Velderrain-Rodríguez G et al (2014) Phenolic compounds: their journey after intake. Food Funct 5:189–197

    Article  PubMed  Google Scholar 

  • Velderrain-Rodriguez G et al (2016) Effect of dietary fiber on the bioaccessibility of phenolic compounds of mango, papaya and pineapple fruits by an in vitro digestion model. Food Sci Technol 36:188–194

    Article  Google Scholar 

  • Wang J, Zhang Z, Huang R (2013) Regulation of ascorbic acid synthesis in plants. Plant Signal Behav 8:e24536. https://doi.org/10.4161/psb.24536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wongmetha O, Ke L-S, Liang Y-S (2012) Sucrose metabolism and physiological changes during mango cv. Irwin growth and development. Hortic Environ Biotechnol 53:373–377

    Article  CAS  Google Scholar 

  • Wongmetha O, Ke LS, Liang YS (2015) The changes in physical, bio-chemical, physiological characteristics and enzyme activities of mango cv. **hwang during fruit growth and development. NJAS-Wagening J Life Sci 72–73:7–12. https://doi.org/10.1016/j.njas.2014.10.001

    Article  Google Scholar 

  • Yahia EM (2017) Fruit and vegetable phytochemicals: chemistry and human health, vol 2. Wiley, New York

    Book  Google Scholar 

  • Zaharah SS, Singh Z, Symons GM, Reid JB (2013) Mode of action of abscisic acid in triggering ethylene biosynthesis and softening during ripening in mango fruit. Postharvest Biol Technol 75:37–44. https://doi.org/10.1016/j.postharvbio.2012.07.009

    Article  CAS  Google Scholar 

  • Zhu F (2015) Interactions between starch and phenolic compound. Trend Food Sci Technol 43:129–143. https://doi.org/10.1016/j.tifs.2015.02.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Consejo Nacional de Ciencia y Tecnología (CONACYT), through Project No. 563: “Un Enfoque Multidisciplinario de la Farmacocinética de Polifenoles de Mango Ataulfo: Interacciones Moleculares, Estudios Preclínicos y Clínicos”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. González-Aguilar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quirós-Sauceda, A.E., Sañudo-Barajas, J.A., Vélez-de la Rocha, R. et al. Effects of ripening on the in vitro antioxidant capacity and bioaccessibility of mango cv. ‘Ataulfo’ phenolics. J Food Sci Technol 56, 2073–2082 (2019). https://doi.org/10.1007/s13197-019-03685-x

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-03685-x

Keywords

Navigation