Log in

New findings on Stratigraphy of the Paleocene–early Eocene successions in Lorestan Zone, Iran

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The foraminiferal contents of the Paleocene-Eocene successions were examined in two sections; at the southern and northern flanks of Chenareh anticline, Lorestan Zone. The Paleocene-Eocene in northern flank was subdivided into three formations from older to younger: Taleh Zang, Kashkan, and Shahbazan formations. During this time, sedimentation of the Paleocene-Eocene Pabdeh and Shahbazan formations took place in the southern flank of Chenareh anticline. Four biostratigraphical zones were defined in Pabdeh Formation as a result of summarizing available data on the taxonomy, stratigraphical range and occurrence of planktic foraminifera, ranging in age from Late Danian to Early Ypresian. The zones are: Praemurica uncinata Interval Zone (P2); Morozovella angulata-Igorina pussila Interval Zone (P3); Globanomalina pseudomenardii Total Range Zone (P4); Morozovella velascoensis Interval Zone (P5). The Taleh Zang Formation and upper part of the Pabdeh Formation contain a rich and diverse assemblage of alveolinids, and nummulitids (Nummulites, Assilina). Their assemblages, referred to SBZ 6, 7 and SBZ 8 (Early Ypresian). The Shahbazan Formation has no index fossils, and it was attributed to Lutetian in age, based on stratigraphic position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acar S (1995) Türkiye’deki Defioik Bölgelerinin Baz Alveolin cinslerinin Alveolina, Borelis ve Praebulalveolina Sistemlerinin TanÂm ve StratigraWlerinin DafÂlÂm [Description and stratigraphic distribution of Alveolina, Borelis and Praebulalveolina systems of some Alveolina genus from diVerent localities of Turkey]. Selçuk University, PhD Thesis

  • Afzal J, Williams M, Leng MJ, Aldridge RJ, Stephenson MH (2011) Evolution of Paleocene to Early Eocene larger benthic foraminifer assemblages of the Indus Basin, Pakistan. Lethaia 44:299–320

    Article  Google Scholar 

  • Alavi M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. AM J SCI 304:1–20

    Article  Google Scholar 

  • Allen MB, Talebian M (2011) Structural variation along the Zagros and the nature of the Dezful Embayment. Ecol Mag 148(5–6):911–924

    Google Scholar 

  • Bagherpour B, Vaziri MR (2012) Facies, paleoenvironment, carbonate platform and facies changes across Paleocene Eocene of the Taleh Zang Formation in the Zagros Basin SW Iran. Hist Biol 24:121–142

    Article  Google Scholar 

  • Beavington-Penney SJ, Racey A (2004) Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. Earth Sci Rev 67:219–265

    Article  Google Scholar 

  • Beavington-Penney SJ, Wright VP, Racey A (2005) Sediment production and dispersal on foraminifera-dominated early tertiary ramps: the Eocene El Garia formation, Tunisia. Sedimentology 52:537–569

    Article  Google Scholar 

  • Beavington-Penney SJ, Wright VP, Racey A (2006) The middle Eocene Seeb Formation of Oman: an investigation of acyclicity, stratigraphic completeness and accumulation rate in shallow marine carbonate settings. J Sediment Res 76:1137–1161

    Article  Google Scholar 

  • Berggren WA, Miller KG (1988) Paleogene tropical planktonic foraminifera biostratigraphy and magnetobiochronology. J Micropaleontol 4:362–380

    Article  Google Scholar 

  • Berggren WA, Pearson P (2005) A revised tropical to subtropical paleogene planktonic foraminiferal zonation. J Foramin Res 35(4):279–298

    Article  Google Scholar 

  • Berggren WA, Kent DV, Swisher III CC, Aubry MP (1995) A revised Cenozoic geochronology and chronostratigraphy. In: Berggren WA, Ken DV Swisher III CC, Aubry M P, Hardenbo lJ (eds) Geochronology, time scales and global stratigraphic correlation: SEPM, society for sedimentary geology. Special Publication 54:129–212

  • Berggren WA, Ouda KA, Ahmad E, Obaidella N, Saad Kh (2003) Upper Paleocene-lower Eocene planktonic foraminiferal biostratigraphy of the Wadi Abu Ghurra section, Upper Nile Valley (Egypt). Micropaleontology 49(12):61–92

    Article  Google Scholar 

  • Bolli HM (1957) The genera Praeglobotruncana, Globotruncana, Rotalipora, Abathomphalus in the upper cretaceous in Trinidad, National Museum of America. Bulletin 215:55–61

    Google Scholar 

  • Bolli HM (1966) Zonation of Cretaceous to Pliocene marine sediments based on planktonic foraminifera. Boletín Asociación Venezolana De Geología, Minería y Petróleo 9:3–32

    Google Scholar 

  • Cahuzac B, Poignant A (1997) Essai de biozonation de l’Oligo-Miocène dans les bassins européens à l’aide des grands foraminifères néritiques. Bull Soc Géol France 168:155–169

    Google Scholar 

  • Clift PD (2016) A revised budget for Cenozoic sedimentary carbon subduction. Rev Geophys 55(1):97–125

    Article  Google Scholar 

  • Cushman JA (1925) An Eocene fauna from the Moctezuma river, Mexico. Am Assoc Petr Geol B 9:298–303

    Google Scholar 

  • Dickens J (2001) Carbon addition and removal during the Late Paleocene Thermal Maximum: basic theory with a preliminary treatment of the isotope record at ODP Site 1051, Blake Nose. Geo Soc 183(1):293–305

    Google Scholar 

  • Drobne K, Cosovic V, Bucković MA (2011) The role of the paleogene adriatic carbonate platform in spatial distribution of alveolinids. Turk J Earth Sci 20:721–751

    Google Scholar 

  • Dunkley Jones T, Lunt DJ, Schmidt DN, Ridgwell A, Sluijs A, Valdes PJ, Maslin M (2013) Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene thermal maximum. Earth Sci Rev 125:123–145

    Article  Google Scholar 

  • Eames FE, Banner FT, Blow WH, Clarke WJ (1962) Fundamentals of mid-tertiary stratigraphical correlation. Cambridge University Press, Cambridge, p 163

    Google Scholar 

  • Ehrenberg SN, Pickard NAH, Laursen GV, Monibi S, Mossadegh ZK, Svana TA, Aqrawi AAM, McArthur JM, Thirlwall MF (2007) Strontium isotope Stratigraphy of the Asmari formation (Oligocene–Lower Miocene), SW Iran. J Petrol Geol 30(2):107–128

    Article  Google Scholar 

  • Farahpour MM, Khaled Hessami KH (2012) Cretaceous sequence of deformation in the SE Zagros fold–thrust belt. J Geol Soc 169:733–743

    Article  Google Scholar 

  • Freeman KH, Hayes JM (1992) Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob Biogeochem 6(2):185–198

    Article  Google Scholar 

  • Ghazban F (2007) Petroleum geology of the persian Gulf. Tehran University and National Iranian Oil Company, Tehran

    Google Scholar 

  • Hadi M (2019) Larger foraminiferal biostratigraphy and microfacies analysis from the Ypresian limestones in the Sistan Suture Zone (eastern Iran). Turk J Earth Sci 28:122–145

    Article  Google Scholar 

  • Hadi M, Mosaddegh H, Abbassi N (2015) Biostratigraphic interpretation and systematics of Alveolina assemblages in the Ziarat Formation from Soltanieh Mountains (Western Alborz). Geosci J 95:39–44

    Google Scholar 

  • Hadi M, Mosaddegh H, Abbassi N (2016) Microfacies and biofabric of nummulite accumulations (Bank) from the Eocene deposits of Western Alborz (NW Iran). J Afr Earth Sci 124:216–233

    Article  Google Scholar 

  • Homke S, Vergés J, Serra-Kiel J, Bernaola G, Sharp I, Garcés M, Goodarzi MH (2009) Late Cretaceous-Paleocene formation of the proto–Zagros foreland basin, Lorestan Province, SW Iran. Geol Soc Am Bull 121:963–978

    Article  Google Scholar 

  • Hottinger L (1960) Recherches sur les Alvéolines du Paléocène et de I’ Eocene, Basel. 1–243

  • Hottinger L (1983) Processes determining the distribution of larger foraminifera in space and time. Utrecht Micropaleontol Bull 30(1983):239–253

    Google Scholar 

  • Hottinger L (1999) “Odd partnerships”, a particular size relation between close species of larger foraminifera, with an emendation of an outstandingly odd partner Glomalveolina delicatissima (Smout 1954) Middle Eocene. Eclogae Geol Helv 92(3):385–393

    Google Scholar 

  • James GA, Wynd JC (1965) Stratigraphy nomenclature of Iranian oil consortium agreement area. Am Assoc Petr Geol B 49:2182–2245

    Google Scholar 

  • Janbaz M, Mohseni H, Piraee AR, Yousefi Yegane B, Seradegh H (2017) Depositional environment of the Shahbazan formation: a tail of evolving ramp to shelf. Appl Sed 5(10):43–63

    Google Scholar 

  • Lacombe O, Grasemann B, Simpson G (2011) Introduction: geodynamic evolution of the Zagros. Geodyn Mag 148(5–6):689–691

    Google Scholar 

  • Li J, Hu X, Garzanti E, Boudagher-Fadel M (2020) Climate-driven hydrological change and carbonate platform demise induced by the Paleocene-Eocene thermal maximum (southern Pyrenees). Paleoceanogr Paleoclimatol Paleoecol 567:1–15

    Google Scholar 

  • Liewellyn VPG (1974) Geological map of Ilam- Kuh Dast, 1:250 000, N.I.O.C

  • Lyons SL, Baczynski AA, Babila TL, Bralower TJ, Hajek EA, Kump LR, Polites EG, Self-Trail JM, Trampush SM, Vornlocher JR, Zachos JC, Freeman KH (2018) Palaeocene-Eocene Thermal Maximum prolonged by fossil carbon oxidation. Nat Geosci Nat Geo Sci 12:54–60

    Article  Google Scholar 

  • Maghfori Moghaddam I (2017) Sedimentary setting and paleoecology of the upper Cretaceous rudist—bearing deposits in Khorram Abad. Zagros Basin, Geosci 26(104):173–186

    Google Scholar 

  • Maghfori Moghaddam I, Jalali M (2004) Stratigraphy and paleoenvironment surveys of Taleh-Zang Formation in south and south west of Khorramabad. J Sci Al-Zahra Univ 17:34–46

    Google Scholar 

  • Martín-Martín M, Guerrera F, Tosquella J, Tramontana M (2020) Paleocene-lower eocene carbonate platforms of westernmost Tethys. Sediment Geol 404:105674

    Article  Google Scholar 

  • Miller KG, Michelle A, Kominz MA, Browning JV, Wright JDG, Mountain GS, Katz M (2005) The phanerozoic record of global sea-level change. Science 310(5752):1293–1298

    Article  Google Scholar 

  • Mohseni H, Alasm IS (2004) Tempested deposits on a storm—influenced carbonate ramp: an example from the Pabdeh Formation (Palaeogene), Zagros Basin SW Iran. J Petrol Geol 27(2):163–178

    Article  Google Scholar 

  • Motiei H (1993) Stratigraphy of Zagros in treatise of geology of Iran, Iran Geological Survey, Iran

  • Özgen-Edrem N, Akyazi M, Karabaşoćğlu A (2007) Biostratigraphic interpretation and systematics of Alveolina assemblages from the Ilerdian—Cuisianlimestones of Southern Eskioehir, Central Turkey. J Asian Earth Sci 29:911–927

    Article  Google Scholar 

  • Racey A (1994) Biostratigraphy and palaeobiogeographic significance of Tertiary nummulitids (foraminifera) from northern Oman. In: Simons MD (ed) Micropalaeontology and hydrocarbon exploration in the Middle East. Chapman and Hall, UK, pp 343–370

    Google Scholar 

  • Rahaghi A (1978) Paleogene biostratigraphy of some parts of Iran. Tehran, National Iranian Oil Company, Geological Laboratories, Laboratories, No. 7, Iran

  • Sadeghi A, Hodavandkhani N (2010) Biostratigraphy of the Pabdeh formation in Emmam Zadeh Ebrahim, NW Izeh City. Quart Iran J Geol 15:81–98

    Google Scholar 

  • Sarkar S (2015) Thanetian-Ilerdian coralline algae and benthic foraminifera from northeast India: microfacies analysis and new insights into the Tethyan perspective. Lethaia 48:13–28

    Article  Google Scholar 

  • Sarkar S (2019) Does specialization imply rare fossil records of some benthic foraminifera: Late Palaeocene examples from the eastern Neo-Tethys (Meghalaya, NE India). Palaeogeogr Palaeoclimatol Palaeoecol 14:124–134

    Article  Google Scholar 

  • Scheibner C, Speijer RP, Marzouk A (2005) Larger foraminiferal turnover during the Paleocene/Eocene thermal maximum and paleoclimatic control on the evolution of platform ecosystems. Geology 33(6):493–496

    Article  Google Scholar 

  • Serra-Kiel J, Hottinger H, Drobne CE (1998) Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. B Soc G FR 169(2):281–299

    Google Scholar 

  • Setudehnia A (1971) International stratigraphic Lexicon of Iran: south-west Iran. Geol Surv Iran 3:287–376

    Google Scholar 

  • Shariatzadeh MS (2004) Biostratigraphy and Micropaleontological investigations on the cutting samples of Qaleh Nar well # 2 , and correlation with Golmahak#1 , Papileh # 1 and Kabud # 1,in Dezful north Embayment, southwestern Iran, Nationa Oil Company, Exploration Directorate Gelological and Geochemical Studies and Researches Palaeontological note # 606(unpublished)

  • Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horury AD, Simmons MD (2001) Arabian plate sequence stratigraphy, GeoArabia Specific Publications 2, Golf Petrolink, Bahrain

  • Sloan LC, Walker JCG, Moore TC (1995) possible role of oceanic heat-transport in early Eocene climate. Paleogeography 10:347–356

    Google Scholar 

  • Turner SK, Ridgwell A (2016) Development of a novel empirical framework for interpreting geological carbon isotope excursions, with implications for the rate of carbon injection across the PETM. Earth Planet S Lett 435:1–3

    Article  Google Scholar 

  • Turner SK, Hull PM, Kump LR, Ridgwell A (2017) A probabilistic assessment of the rapidity of PETM onset. Nat Commun 8:1–10

    Google Scholar 

  • Wynd JG (1965) Biofacies of the Iranian oil consortium agreement area, Report No.1082

  • Yousefi YB, Abbassi FS (2011) Sedimentary facies, architectural elements and trace fossils of kashkan formation, folded zagros zone in SW Iran. J Sci Islam Repub Iran 22(3):239–255

    Google Scholar 

  • Zachos JC, Lohmann LC (1994) Evolution of early Cenozoic marine temperatures. Paleoceanogr Paleoclimatol 9(2):353–387

    Article  Google Scholar 

  • Zachos JC, Röhl U, Schellenberg SA, Sluijs A, Hodell DA, Kelly DC, Thomas E, Nicolo M, Raffi I, Lourens LJ, McCarren H, Kroon D (2005) Rapid acidification of the ocean during the paleocene-eocene thermal maximum. Science 308(5728):1611–1615

    Article  Google Scholar 

  • Zamagni J, Mutti M, Ballato P, Kosir A (2012) The Paleocene-Eocene thermal maximum (PETM) in shallow-marine successions of the Adriatic carbonate platform (SW Slovenia). Geol Soc Am Bull 124(7/8):1071–1086

    Article  Google Scholar 

  • Ziegler MA (2001) Late Permian to Holocene paleofacies evolution of the Arabian Plate and its hydrocarbon occurrences. GeoArabia 6:445–504

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraj Maghfouri Moghaddam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghaddam, I.M., Darabi, G. & Mirsadzadeh, Y. New findings on Stratigraphy of the Paleocene–early Eocene successions in Lorestan Zone, Iran. Carbonates Evaporites 37, 13 (2022). https://doi.org/10.1007/s13146-022-00756-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-022-00756-7

Keywords

Navigation