Log in

A generalized multiscale finite element method for elastic wave propagation in fractured media

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider elastic wave propagation in fractured media applying a linear-slip model to represent the effects of fractures on the wavefield. Fractured media, typically, are highly heterogeneous due to multiple length scales. Direct numerical simulations for wave propagation in highly heterogeneous fractured media can be computationally expensive and require some type of model reduction. We develop a multiscale model reduction technique that captures the complex nature of the media (heterogeneities and fractures) in the coarse scale system. The proposed method is based on the generalized multiscale finite element method, where the multiscale basis functions are constructed to capture the fine-scale information of the heterogeneous, fractured media and effectively reduce the degrees of freedom. These multiscale basis functions are coupled via the interior penalty discontinuous Galerkin method, which provides a block-diagonal mass matrix. The latter is needed for fast computation in an explicit time discretization, which is used in our simulations. Numerical results are presented to show the performance of the presented multiscale method for fractured media. We consider several cases where fractured media contain fractures of multiple lengths. Our numerical results show that the proposed reduced-order models can provide accurate approximations for the fine-scale solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Discontinuous galerkin methods for elliptic problems. In: Discontinuous Galerkin Methods, pp. 89–101. Springer, Berlin (2000)

  • Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Bakulin, A., Grechka, V., Tsvankin, I.: Seismic inversion for the parameters of two orthogonal fracture sets in a VTI background medium. Geophysics 67, 292–299 (2002)

    Article  Google Scholar 

  • Bates, C.R., Phillips, D.R., Grimm, R., Lynn, H.: The seismic evaluation of a naturally fractured tight gas sand reservoir in the Wind River Basin. Wyom. Petrol. Geosci. 7, 35–44 (2001)

    Article  Google Scholar 

  • Calo, V., Efendiev, Y., Galvis, J., Li, G.: Randomized oversampling for generalized multiscale finite element methods. ar**v:1409.7114

  • Cheverda, V., Lisitsa, V., Reshetova, G., Pozdniakov, V.: Generation of scattered waves by cavernous/fractured reservoirs. In: KazGeo (2010)

  • Chichinina, T., Sabinin, V., Ronquillo-Jarillo, G.: QVOA analysis: P-wave attenuation anisotropy for fracture characterization. Geophysics 71, C37–C48 (2006)

    Article  Google Scholar 

  • Chung, E., Efendiev, Y., Gibson, R.: An energy-conserving discontinuous multiscale finite element method for the wave equation in heterogeneous media. Adv Adapt Data Anal 3, 251–268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Chung, E., Efendiev, Y., Leung, W.: Generalized multiscale finite element method for wave propagation (2013). (preprint)

  • Chung, E.T., Efendiev, Y., Fu, S.: Generalized multiscale finite element method for elasticity equations. GEM-Int. J. Geomath. 5, 225–254 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Chung, E.T., Efendiev, Y., Lee, C.S.: Mixed generalized multiscale finite element methods and applications. Multiscale Model. Simul. 13, 338–366 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Chung, E.T., Efendiev, Y., Leung, W.T.: Generalized multiscale finite element methods for wave propagation in heterogeneous media. Multiscale Model. Simul. 12, 1691–1721 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Clayton, R., Engquist, B.: Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seismolog. Soc. Am. 67, 1529–1540 (1977)

    Google Scholar 

  • Coates, R.T., Schoenberg, M.: Finite-difference modeling of faults and fractures. Geophysics 60, 1514–1526 (1995)

    Article  Google Scholar 

  • Crampin, S.: A review of wave motion in anisotropic and cracked elastic media. Wave Motion 3, 343–391 (1981)

    Article  MATH  Google Scholar 

  • De Basabe, J.D., Sen, M.K.: New developments in the finite-element method for seismic modeling. Leading Edge 28, 562–567 (2009)

    Article  Google Scholar 

  • De Basabe, J.D., Sen, M.K.: Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time step**. Geophys. J. Int. 181, 577–590 (2010)

    Article  Google Scholar 

  • De Basabe, J.D., Sen, M.K., Wheeler, M.F.: The interior penalty discontinuous galerkin method for elastic wave propagation: grid dispersion. Geophys. J. Int. 175, 83–93 (2008)

    Article  Google Scholar 

  • De Basabe, J.D., Sen, M.K., Wheeler, M.F., et al.: Seismic wave propagation in fractured media: a discontinuous galerkin approach. SEG Expanded Abstr. 30, 2920 (2011)

    Google Scholar 

  • Efendiev, Y., Galvis, J.: Coarse-grid multiscale model reduction techniques for flows in heterogeneous media and applications. In: Chapter of Numerical Analysis of Multiscale Problems, Lecture Notes in Computational Science and Engineering, vol. 83, pp. 97–125

  • Efendiev, Y., Galvis, J., Hou, T.: Generalized multiscale finite element methods. J. Comput. Phys. 251, 116–135 (2013)

    Article  MathSciNet  Google Scholar 

  • Efendiev, Y., Galvis, J., Li, G., Presho, M.: Generalized multiscale finite element methods: oversampling strategies. Int. J. Multiscale Comput. Eng. 12, 465–484 (2014)

    Article  Google Scholar 

  • Efendiev, Y., Hou, T.: Multiscale finite element methods: theory and applications. In: Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4. Springer, New York (2009)

    Google Scholar 

  • Engquist, B., Majda, A.: Absorbing boundary conditions for numerical simulation of waves. Proc. Natl. Acad. Sci. 74, 1765–1766 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Fang, X., Fehler, M., Chen, T., Burns, D., Zhu, Z.: Sensitivity analysis of fracture scattering. Geophysics 78, T1–T10 (2013)

    Article  Google Scholar 

  • Gao, K., Chung, E.T., Gibson Jr, R.L., Efendiev, Y., Fu, S., et al.: A multiscale method for elastic wave equation modeling. In: 2013 SEG Annual Meeting. Society of Exploration Geophysicists, Tulsa (2013)

  • Gao, K., Chung, E.T., Gibson Jr., R.L., Fu, S., Efendiev, Y.: A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory. Geophysics 80, D385–D401 (2015)

    Article  Google Scholar 

  • Gao, K., Fu, S., Gibson, R.L., Chung, E.T., Efendiev, Y.: Generalized multiscale finite-element method (gmsfem) for elastic wave propagation in heterogeneous, anisotropic media. J. Comput. Phys. 295, 161–188 (2015)

    Article  MathSciNet  Google Scholar 

  • Gibson, R.L., Gao, K.: An effective medium model for the stress-dependence of anisotropic seismic velocities in fractured rock. Geol. Soc. Lond. Spec. Publ. 406, 359–374 (2015)

    Article  Google Scholar 

  • Gibson Jr., R.L., Toksöz, M.N.: Permeability estimation from velocity anisotropy in fractured rock. J. Geophys. Res. 95, 15643–15657 (1990)

    Article  Google Scholar 

  • Grimm, R.E., Lynn, H.B., Bates, C.R., Phillips, D.R., Simon, K.M., Beckham, W.E.: Detection and analysis of naturally fractured gas reservoirs: multiazimuth seismic surveys in the Wind River basin. Wyom. Geophys. 64, 1277–1292 (1999)

    Article  Google Scholar 

  • Hsu, C.-J., Schoenberg, M.: Elastic waves through a simulated fractured medium. Geophysics 58, 964–977 (1993)

    Article  Google Scholar 

  • Hudson, J.: Wave speeds and attenuation of elastic waves in material containing cracks. Geophys. J. R. Astronom. Soc. 64, 133–150 (1981)

    Article  MATH  Google Scholar 

  • Hudson, J.A., Liu, E., Crampin, S.: The mechanical properties of materials with interconnected cracks and pores. Geophys. J. Int. 124, 105–112 (1996)

    Article  Google Scholar 

  • Kim, H.-S., Oh, T.-M., Cho, G.-C.: P-wave velocity estimation of unconsolidated sediments containing CO2. Int. J. Greenhouse Gas Control 33, 18–26 (2015)

    Article  Google Scholar 

  • Komatitsch, D., Tromp, J.: Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139, 806–822 (1999)

    Article  Google Scholar 

  • Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave propagation—i. validation. Geophys. J. Int. 149, 390–412 (2002)

    Article  Google Scholar 

  • Kostin, V., Lisitsa, V., Reshetova, G., Tcheverda, V.: Simulation of seismic waves propagation in multiscale media: impact of cavernous/fractured reservoirs. In: Jónasson, K. (ed.) Applied Parallel and Scientific Computing. Lecture Notes in Computer Science, vol. 7133, pp. 54–64. Springer, Berlin (2012)

  • Kostin, V., Lisitsa, V., Reshetova, G., Tcheverda, V.: Finite difference simulation of elastic wave propagation through 3d heterogeneous multiscale media based on locally refined grids. Numer. Anal. Appl. 6, 40–48 (2013)

    Article  MATH  Google Scholar 

  • Krüger, O.S., Saenger, E.H., Oates, S.J., Shapiro, S.A.: A numerical study on reflection coefficients of fractured media. Geophysics 72, D61–D67 (2007)

    Article  Google Scholar 

  • Lisitsa, V., Reshetova, G., Tcheverda, V.: Finite-difference algorithm with local time-space grid refinement for simulation of waves. Comput. Geosci. 16, 39–54 (2012)

    Article  MATH  Google Scholar 

  • Meadows, M.A., Cole, S.P.: 4D seismic modeling and CO2 pressure-saturation inversion at the Weyburn Field, Saskatchewan. Int. J. Greenhouse Gas Contr. 16, Supplement 1 (2013), pp. S103–S117. The IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project

  • Parra, J.O., Collier, H.A.: Characterization of fractured zones in the Twin Creek Reservoir. Lodgepole field, Utah–Wyoming overthrust belt. Petrophysics 41, 352–362 (2000)

    Google Scholar 

  • Pashin, J., **, G., Zheng, C., Chen, S., McIntyre, M.: Discrete fracture network models for risk assessment of carbon sequestration in coal (2008). http://www.osti.gov/scitech/servlets/purl/941131

  • Pérez, M.A., Gibson Jr., R.L., Toksöz, M.N.: Detection of fracture orientation using azimuthal variation of P-wave AVO responses. Geophysics 64, 1253–1265 (1999)

    Article  Google Scholar 

  • Petersson, N.A., Sjogreen, B.: An energy absorbing far-field boundary condition for the elastic wave equation. Commun. Comput. Phys. 6, 483 (2009)

    Article  MathSciNet  Google Scholar 

  • Rivière, B.: Discontinuous galerkin methods for solving elliptic and parabolic equations: theory and implementation (2008)

  • Schoenberg, M.: Elastic wave behavior across linear slip interfaces. J. Acoust. Soc. Am. 68, 1516–1521 (1980)

    Article  MATH  Google Scholar 

  • Schoenberg, M., Sayers, C.M.: Seismic anisotropy of fractured rock. Geophysics 60, 204–211 (1995)

    Article  Google Scholar 

  • Screaton, E., et al.: Interactions between deformation and fluids in the frontal thrust region of the NanTroSEIZE transect offshore the Kii Peninsula Japan: Results from IODP Expedition 316 Sites C0006 and C0007. Geochem. Geophys. Geosyst. 10, Q0AD01 (2009). doi:10.1029/2009GC002713

  • Shekhar, R., Gibson Jr., R.L.: Generation of spatially correlated fracture models for seismic simulations. Geophys. J. Int. 185, 341–351 (2011)

    Article  Google Scholar 

  • Shen, F., Villavicencio, A., Garcia, J., Bustos, A., Avendano, J. : Characterization and modeling study of the carbonate-fractured reservoir in the Cantarell Field, Mexico, SPE 115907, presented at SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, 21–24 September (2008)

  • Strijker, G., Bertotti, G., Luthi, S.M.: Multi-scale fracture network analysis from an outcrop analogue: a case study from the Cambro–Ordovician clastic succession in Petra. Jordan Marine Petrol. Geol. 38, 104–116 (2012)

    Article  Google Scholar 

  • Symes, W., Terentyev, I.S., Vdovina, T.: Getting it right without knowing the answer: quality control in a large seismic modeling project. SEG Techn. Program Expand. Abstr. 28, 2602–2606 (2009)

    Google Scholar 

  • Thore, P., Tarrass, I., Gibson, R.L., Lisitsa, V., Reshetova, G., Tcheverda, V.: Accurate generation of seismograms on fractured reservoirs. International Petroleum Technology Conference. Doha, Qatar (2009)

  • Tromp, J., Komattisch, D., Liu, Q.: Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 3, 1–32 (2008)

    MATH  Google Scholar 

  • Vlastos, S., Liu, E., Main, I.G., Narteau, C.: Numerical simulation of wave propagation in 2-d fractured media: scattering attenuation at different stages of the growth of a fracture population. Geophys. J. Int. 171, 865–880 (2007)

    Article  Google Scholar 

  • White, D.: Seismic characterization and time-lapse imaging during seven years of CO2 flood in the weyburn field, saskatchewan, Canada. Int. J. Greenhouse Gas Contr. 16, Supplement 1 (2013), pp. S78–S94. The IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project

  • Willis, M.E., Burns, D.R., Rao, R., Minsley, B., Toksöz, M.N., Vetri, L.: Spatial orientation and distribution of reservoir fractures from scattered seismic energy. Geophysics 71, O43–O51 (2006)

    Article  Google Scholar 

  • Zeidouni, M., van Kruijsdijk, C.: Characterizing sparsely fractured reservoirs through structural parameters, time-lapse 3D seismic, and production data. SPE 100912 (2006)

  • Zhang, J.: Elastic wave modeling in fractured media with an explicit approach. Geophysics 70, T75–T85 (2005)

    Article  Google Scholar 

  • Zhou, B., Greenhalgh, S., Maurer, H.: 2.5-D frequency-domain seismic wave modeling in heterogeneous, anisotropic media using a Gaussian quadrature grid technique. Comput. Geosci. 39, 18–33 (2012)

    Article  Google Scholar 

  • Zhou, B., Greenhalgh, S.A.: 3-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media using a Gaussian quadrature grid approach. Geophys. J. Int. 184, 507–526 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The research of Eric Chung is supported by Hong Kong RGC General Research Fund (Project 400411). YE’s work is partially supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under Award Number DE-FG02-13ER26165 and the DoD Army ARO Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalchin Efendiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, E.T., Efendiev, Y., Gibson, R.L. et al. A generalized multiscale finite element method for elastic wave propagation in fractured media. Int J Geomath 7, 163–182 (2016). https://doi.org/10.1007/s13137-016-0081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-016-0081-4

Keywords

Mathematics Subject Classification

Navigation