Log in

Estimating genetic parameters with molecular relatedness and pedigree reconstruction for growth traits in early mixed breeding of juvenile turbot

  • Articles
  • Marine Biology
  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

An introduced turbot population was used to establish families and to estimate genetic parameters of the offspring. However, there is a lack of pedigree information, and common environmental effects can be introduced when each full-sib family is raised in a single tank. Therefore, in the genetic evaluation, SSRs (simple sequence repeats) were used to reconstruct the pedigree and to calculate molecular relatedness between individuals, and the early mixed-family culture model was used to remove the impact of the common environmental effects. After 100 d of early mixed culture, twenty SSRs were used to cluster 20 families and to calculate paired molecular relationships (n=880). Additive genetic matrices were constructed using molecular relatedness (MR) and pedigree reconstruction (PR) and were then applied to the same animal model to estimate genetic parameters. Based on PR, the heritabilities for body weight and body length were 0.214±0.124 and 0.117±0.141, and based on MR they were 0.101±0.031 and 0.102±0.034, respectively. Cross validation showed that the accuracies of the estimated breeding values based on MR (body weight and body length of 0.717±0.045 and 0.629±0.141, respectively) were higher than those of PR (body weight and body length of 0.692±0.052 and 0.615±0.060, respectively). The MR method ensure availability of all genotyped selection candidates, thereby improving the accuracy of the breeding value estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bink M C A M, Anderson A D, van de Weg W E, et al. 2008. Comparison of marker-based pairwise relatedness estimators on a pedigreed plant population. Theoretical and Applied Genetics, 117(6): 843–855, doi: https://doi.org/10.1007/s00122-008-0824-1

    Article  Google Scholar 

  • Blanquer A, Alayse J P, Berrada-Rkhami O, et al. 1992. Allozyme variation in turbot (Psetta maxima) and brill (Scophthalmus rhombus) (Osteichthyes, Pleuronectoformes, Scophthalmidae) throughout their range in Europe. Journal of Fish Biology, 41(5): 725–736, doi: https://doi.org/10.1111/j.1095-8649.1992.tb02702.x

    Article  Google Scholar 

  • Blonk R J W, Komen H, Kamstra A, et al. 2010. Estimating breeding values with molecular relatedness and reconstructed pedigrees in natural mating populations of common sole, Solea solea. Genetics, 184(1): 213–219, doi: https://doi.org/10.1534/genetics.109.110536

    Article  Google Scholar 

  • Cardellino R, Rovira J. 1987. Mejoramiento Genético Animal. Buenos Aires, Argentina: Hemisferio Sur

    Google Scholar 

  • Falconer D S, Mackay T F C. 1996. Introduction to Quantitative Genetics. 4th ed. Longman, Harlow: Benjamin Cummings

    Google Scholar 

  • Gall G A E, Bakar Y, Famula T. 1993. Estimating genetic change from selection. Aquaculture, 111(1–4): 75–88, doi: https://doi.org/10.1016/0044-8486(93)90026-U

    Article  Google Scholar 

  • Gheyas A A, Woolliams J A, Taggart J B, et al. 2009. Heritability estimation of silver carp (Hypophthalmichthys molitrix) harvest traits using microsatellite based parentage assignment. Aquaculture, 294(3–4): 187–193, doi: https://doi.org/10.1016/j.aquaculture.2009.06.013

    Article  Google Scholar 

  • Gilmour A R, Gogel B J, Cullis B R, et al. 2009. ASReml User Guide Release 3.0. Hemel Hempstead, UK: VSN International Ltd

    Google Scholar 

  • Gjerde B, Korsvoll S A. 1999. Realized Selection Differentials for Growth Rate and Early Sexual Maturity in Atlantic Salmon. Oostende, Belgium: Aquaculture Europe, 99: 73–74

    Google Scholar 

  • Guan Jiantao, Wang Weiji, Luan Sheng, et al. 2016. Estimation of genetic parameters for early growth trait of turbot (Scophthalmus maximus L.) using molecular relatedness. Aquaculture Research, 47(7): 2205–2214, doi: https://doi.org/10.1111/are.12673

    Article  Google Scholar 

  • Hu Yulong, Guan Jiantao, Ma Yu, et al. 2016. An estimation of genetic parameters of growth traits in juvenile turbot (Scophthalmus maximus L.) using parental molecular relatedness. Acta Oceanologica Sinica, 35(2): 126–130, doi: https://doi.org/10.1007/s13131-015-0643-6

    Article  Google Scholar 

  • Jones O R, Wang **liang. 2010. COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10(3): 551–555, doi: https://doi.org/10.1111/j.1755-0998.2009.02787.x

    Article  Google Scholar 

  • Kalinowski S T, Taper M L, Marshall T C. 2007. Revising how the computer program CERVUS accommodates genoty** error increases success in paternity assignment. Molecular Ecology, 16(5): 1099–1106, doi: https://doi.org/10.1111/j.1365-294X.2007.03089.x

    Article  Google Scholar 

  • Karaket T, Poompuang S. 2012. CERVUS vs. COLONY for successful parentage and sibship determinations in freshwater prawn Macrobrachium rosenbergii de Man. Aquaculture, 324–325: 307–311, doi: https://doi.org/10.1016/j.aquaculture.2011.10.045

    Article  Google Scholar 

  • Lei Jilin. 2002. Problem and suggestion of introducting species for marine culture. China Fisheries, (2): 63–65

  • Lei Jilin. 2006. Outlook of the marine fish culture industry in China. Marine Fisheries Research (in Chinese), 27(2): 1–9

    Google Scholar 

  • Lei Jilin, Liu **nfu. 1995. A primary study on culture of turbot, Scophthalmus maeoticus L. Modern Fisheries Information (in Chinese), 10(11): 1–3

    Google Scholar 

  • Lei Jilin, Men Qiang, Wang Yingeng, et al. 2002. Review of “Green House+Deep Well Seawater” industrialized culture pattern of turbot (Scophthalmus maximus). Marine Fisheries Research (in Chinese), 23(4): 1–7

    Google Scholar 

  • Li Dongyu. 2016. Genetic parameter estimation for growth and meat rate traits of Pacific white shrimp (Litopenaeus vannamei) in low temperature condition by microsatellite markers (in Chinese)[dissertation]. Nan**g: Nan**g Agricultural University

    Google Scholar 

  • Liu Baosuo, Zhang Tianshi, Kong Jie, et al. 2011. Estimation of genetic parameters for growth and upper thermal tolerance traits in turbot Scophthalmus maximus. Journal of Fisheries of China (in Chinese), 35(11): 1601–1606

    Google Scholar 

  • Luan Sheng, Kong Jie, Wang Qingyin. 2008. Methods and application of aquatic animal breeding value estimation: a review. Marine Fisheries Research (in Chinese), 29(3): 101–107

    Google Scholar 

  • Lucas T, Macbeth M, Degnan S M, et al. 2006. Heritability estimates for growth in the tropical abalone Haliotis asinina using microsatellites to assign parentage. Aquaculture, 259(1–4): 146–152, doi: https://doi.org/10.1016/j.aquaculture.2006.05.039

    Article  Google Scholar 

  • Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sunderland: Sinauer Associates, Inc: 360–361

    Google Scholar 

  • Lyu Ding, Wang Weiji, Luan Sheng, et al. 2017. Estimating genetic parameters for growth traits with molecular relatedness in turbot (Scophthalmus maximus, Linnaeus). Aquaculture, 468: 149–155, doi: https://doi.org/10.1016/j.aquaculture.2016.09.049

    Article  Google Scholar 

  • Ma Aijun, Wang **nan, Lei Jilin. 2009. Genetic parameterization for turbot Scophthalmus maximus: implication to breeding strategy. Oceanologia et Limnologia Sinica (in Chinese), 40(2): 187–194

    Google Scholar 

  • Mas-Muñoz J, Blonk R, Schrama J W, et al. 2013. Genotype by environment interaction for growth of sole (Solea solea) reared in an intensive aquaculture system and in a semi-natural environment. Aquaculture, 410–411: 230–235, doi: https://doi.org/10.1016/j.aquaculture.2013.06.012

    Article  Google Scholar 

  • Men Qiang. 2002. Overview on turbot, Scophthalmus maximus (Linnaeus) introduced to China for ten years. Modern Fisheries Information (in Chinese), 17(9): 14–17

    Google Scholar 

  • Nguyen T T T, Hayes B J, Ingram B A. 2014. Genetic parameters and response to selection in blue mussel (Mytilus galloprovincialis) using a SNP-based pedigree. Aquaculture, 420–421: 295–301, doi: https://doi.org/10.1016/j.aquaculture.2013.11.021

    Article  Google Scholar 

  • R Core Team. 2013. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/ [2018-01-07]

    Google Scholar 

  • Ruan ** of turbot (Scophthalmus maximus L.) using microsatellite markers and its application in QTL analysis. Aquaculture, 308: 89–100, doi: https://doi.org/10.1016/j.aquaculture.2010.08.010

    Article  Google Scholar 

  • Sambrook J, Fristch E F, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. New York: Cold Spring Harbor Laboratory

    Google Scholar 

  • Shen Xueyan, Gong Qingli, Lei **lin, et al. 2004. Population genetic structure analysis of the imported turbot seedlings Scophthalmus maximus L. using RAPD and microsatellite technique. Oceanologia et Limnologia Sinica (in Chinese), 35(4): 332–341

    Google Scholar 

  • Shen Xueyan, Kong Jie, Gong Qingli, et al. 2005. The investigation and exploition of turbot (Scophthalmus maximus L.) genetic resources. Marine Fisheries Research (in Chinese), 26(6): 94–100

    Google Scholar 

  • Vandeputte M, Kocour M, Mauger S, et al. 2004. Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp (Cyprinus carpio L.). Aquaculture, 235(1–4): 223–236, doi: https://doi.org/10.1016/j.aquaculture.2003.12.019

    Article  Google Scholar 

  • Wang Gang. 2010. Turbot industry transformation period has arrived. Ocean And Fishery (in Chinese), (1): 14–16, 20

  • Wang **liang. 2007. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genetics Research, 89(3): 135–153, doi: https://doi.org/10.1017/S0016672307008798

    Article  Google Scholar 

  • Wang **liang. 2011. COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Molecular Ecology Resources, 11(1): 141–145, doi: https://doi.org/10.1111/j.1755-0998.2010.02885.x

    Article  Google Scholar 

  • Wright S. 1922. Coefficients of inbreeding and relationship. The American Naturalist, 56(645): 330–338, doi: https://doi.org/10.1086/279872

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Kong.

Additional information

Foundation item

The Agriculture Variety Improvement Project of Shandong Province under contract No. 2019LZGC013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Wang, W., Hu, Y. et al. Estimating genetic parameters with molecular relatedness and pedigree reconstruction for growth traits in early mixed breeding of juvenile turbot. Acta Oceanol. Sin. 40, 66–73 (2021). https://doi.org/10.1007/s13131-021-1799-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-021-1799-z

Key words

Navigation