Log in

Seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

The seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea are investigated using the latest eddy dataset and ARMOR3D data. Eddy-centric composites reveal that the horizontal distribution of temperature anomaly associated with eddy in winter is more of a dipole pattern in upper 50 m and tends to be centrosymmetric below 50 m, while in summer the distribution pattern is centrosymmetric in the entire water column. The horizontal distribution of eddy-induced salinity anomaly exhibits similar seasonal characteristics, except that the asymmetry of the salinity anomaly is weaker. The vertical distribution of temperature anomaly associated with eddy shows a monolayer structure, while the salinity anomaly demonstrates a triple-layer structure. Further analysis indicates that the vertical distribution of the anomalies is related to the vertical structure of background temperature and salinity fields, and the asymmetry of the anomalies in upper 50 m is mainly caused by the horizontal advection of background temperature and salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amores A, Melnichenko O, Maximenko N. 2017a. Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3–D structure and transport with application to the salinity maximum. Journal of Geophysical Research: Oceans, 122(1): 23–41, doi: 10.1002/jgrc.v122.1

    Google Scholar 

  • Amores A, Monserrat S, Melnichenko O, et al. 2017b. On the shape of sea level anomaly signal on periphery of mesoscale ocean eddies. Geophysical Research Letters, 44(13): 6926–6932, doi: 10.1002/2017GL073978

    Article  Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M, et al. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15): L15606

    Article  Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216, doi: 10.1016/j.pocean.2011.01.002

    Article  Google Scholar 

  • Chen Gengxin, Hou Yijun, Chu **aoqing. 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. Journal of Geophysical Research: Oceans, 116(6): C06018

    Google Scholar 

  • Chen Gengxin, Wang Dongxiao, Dong Changming, et al. 2015. Observed deep energetic eddies by seamount wake. Scientific Reports, 5: 17416, doi: 10.1038/srep17416

    Article  Google Scholar 

  • Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5: 3294, doi: 10.1038/ncomms4294

    Article  Google Scholar 

  • Faghmous J H, Frenger I, Yao Yuanshun, et al. 2015. A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific Data, 2: 150028, doi: 10.1038/sdata.2015.28

    Article  Google Scholar 

  • Falkowski P G, Ziemann D, Kolber Z, et al. 1991. Role of eddy pum** in enhancing primary production in the ocean. Nature, 352(6330): 55–58, doi: 10.1038/352055a0

    Article  Google Scholar 

  • Fang Yue, Fang Guohong, Yu Kejun. 1996. ADI barotropic ocean model for simulation of Kuroshio intrusion into China southeastern waters. Chinese Journal of Oceanology and Limnology, 14(4): 357–366, doi: 10.1007/BF02850557

    Article  Google Scholar 

  • Fang Guohong, Wang Gang, Fang Yue, et al. 2012. A review on the South China Sea western boundary current. Acta Oceanologica Sinica, 31(5): 1–10, doi: 10.1007/s13131–012–0231–y

    Article  Google Scholar 

  • Frenger I, Münnich M, Gruber N, et al. 2015. Southern Ocean eddy phenomenology. Journal of Geophysical Research: Oceans, 120(11): 7413–7449, doi: 10.1002/2015JC011047

    Google Scholar 

  • Gaube P, McGillicuddy D J Jr, Chelton D B, et al. 2014. Regional variations in the influence of mesoscale eddies on near–surface chlorophyll. Journal of Geophysical Research: Oceans, 119(12): 8195–8220, doi: 10.1002/2014JC010111

    Google Scholar 

  • Guinehut S, Le Traon P Y, Larnicol G, et al. 2004. Combining Argo and remote–sensing data to estimate the ocean three–dimensional temperature fields—a first approach based on simulated observations. Journal of Marine Systems, 46(1–4): 85–98

    Article  Google Scholar 

  • Guinehut S, Dhomps A L, Larnicol G, et al. 2012. High resolution 3–D temperature and salinity fields derived from in situ and satellite observations. Ocean Science, 8(5): 845–857, doi: 10.5194/os–8–845–2012

    Article  Google Scholar 

  • Hu Jianyu, Gan Jian**, Sun Zhenyu, et al. 2011. Observed three–dimensional structure of a cold eddy in the southwestern South China Sea. Journal of Geophysical Research: Oceans, 116(5): C05016

    Google Scholar 

  • Hu Zifeng, Tan Yehui, Song **ngyu, et al. 2014. Influence of mesoscale eddies on primary production in the South China Sea during spring inter–monsoon period. Acta Oceanologica Sinica, 33(3): 118–128, doi: 10.1007/s13131–014–0431–8

    Article  Google Scholar 

  • Huang Bangqin, Hu Jun, Xu Hongzhou, et al. 2010. Phytoplankton community at warm eddies in the northern South China Sea in winter 2003/2004. Deep Sea Research Part II: Topical Studies in Oceanography, 57(19–20): 1792–1798

    Article  Google Scholar 

  • Klein P, Lapeyre G. 2009. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annual Review of Marine Science, 1: 351–375, doi: 10.1146/annurev.marine. 010908.163704

    Article  Google Scholar 

  • Mason E, Pascual A, Gaube P, et al. 2017. Subregional characterization of mesoscale eddies across the Brazil–Malvinas confluence. Journal of Geophysical Research: Oceans, 122(4): 3329–3357, doi: 10.1002/2016JC012611

    Google Scholar 

  • Mulet S, Rio M H, Mignot A, et al. 2012. A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in–situ measurements. Deep Sea Research Part II: Topical Studies in Oceanography, 77–80: 70–81

    Google Scholar 

  • Nan Feng, He Zhigang, Zhou Hui, et al. 2011. Three long–lived anticyclonic eddies in the northern South China Sea. Journal of Geophysical Research: Oceans, 116(C5): C05002

    Google Scholar 

  • Shu Yeqiang, **u Peng, Xue Huijie, et al. 2016. Glider–observed anticyclonic eddy in northern South China Sea. Aquatic Ecosystem Health & Management, 19(3): 233–241

    Article  Google Scholar 

  • Small R J, De Szoeke, **, et al. 2008. Air–sea interaction over ocean fronts and eddies. Dynamics of Atmospheres and Oceans, 45(3–4): 274–319

    Article  Google Scholar 

  • Sun Shuangwen, Fang Yue, Liu Baochao, et al. 2016. Coupling between SST and wind speed over mesoscale eddies in the South China Sea. Ocean Dynamics, 66(11): 1467–1474, doi: 10.1007/s10236–016–0993–4

    Article  Google Scholar 

  • Wang Dongxiao, Xu Hongzhou, Lin **g, et al. 2008. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. Journal of Oceanography, 64(6): 925–935, doi: 10.1007/s10872–008–0076–3

    Article  Google Scholar 

  • Wang Qiang, Zeng Lili, Zhou Weidong, et al. 2015. Mesoscale eddies cases study at **sha waters in the South China Sea in 2009/2010. Journal of Geophysical Research: Oceans, 120(1): 517–532, doi: 10.1002/2014JC009814

    Google Scholar 

  • Wyrtki K. 1961. Physical Oceanography of the Southeast Asian Waters. UC San Diego: Scripps Institution of Oceanography, 144–182

    Google Scholar 

  • Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324, doi: 10.1126/science.1252418

    Article  Google Scholar 

  • Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6: 24349, doi: 10.1038/srep24349

    Article  Google Scholar 

  • Zu Tingting, Wang Dongxiao, Yan Changxiang, et al. 2013. Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dynamics, 63(5): 519–531, doi: 10.1007/s10236–013–0612–6

    Article  Google Scholar 

Download references

Acknowledgements

The Mesoscale Eddy Trajectory Atlas Product is provided by AVISO+ (http://www.aviso.altimetry.fr/), and Yongcan Zu is also grateful to Dudley B. Chelton for his helpful comments on the dataset. The Global ARMOR3D L4 Reprocessed dataset is provided by Copernicus Marine Environment Monitoring Service (http://marine.copernicus.eu/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangwen Sun.

Additional information

Foundation item: The National Key R&D Program of China under contract No. 2017YFC1405100; the National Natural Science Foundation of China under contract Nos 41576028, 41306032 and 41876030; the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No. U1606405; the research fund from FIO-UM Joint Center of Marine Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zu, Y., Sun, S., Zhao, W. et al. Seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea. Acta Oceanol. Sin. 38, 29–38 (2019). https://doi.org/10.1007/s13131-018-1222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-018-1222-4

Key words

Navigation