Log in

Exosome-derived SNHG16 sponging miR-4500 activates HUVEC angiogenesis by targeting GALNT1 via PI3K/Akt/mTOR pathway in hepatocellular carcinoma

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Accumulating evidence suggests cancer-derived exosomes play an important role in promoting angiogenesis. Long noncoding RNA small nucleolar RNA host gene 16 (SNHG16) is known to aggravate hepatocellular carcinoma (HCC) progression. However, the function of exosomal SNHG16 in HCC angiogenesis remains unclear. In this study, the expression of SNHG16 was significantly upregulated in HCC tissues and cell lines. The proliferative, migratory, and angiogenic abilities of HUVECs were enhanced after exposure to exosomes derived from HCC cells by transmitting SNHG16. In addition, SNHG16 was validated to promote the biological function of HUVECs directly. Exosomal SNHG16 increased GALNT1 expression to promote angiogenesis via sponging miR-4500. SNHG16/miR-4500/GALNT1 axis played an important role in exosome-mediated angiogenesis and tumor growth in vitro and vivo. Furthermore, SNHG16 activated PI3K/Akt/mTOR pathway via competing endogenous miR-4500 and GALNT1. Meanwhile, the expression of plasma exosomal SNHG16 upregulated in the plasma of HCC patients. These data elucidated the essential role of exosomal SNHG16 in communication between HCC cells and endothelial cells. Exosomal SNHG16 could be utilized as a therapeutic target for anti-angiogenesis in HCC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article and are available from the corresponding author upon reasonable request.

References

  1. Cai C, Huo Q, Wang X, Chen B, Yang Q (2017) SNHG16 contributes to breast cancer cell migration by competitively binding miR-98 with E2F5. Biochem Biophys Res Commun 485:272–278

    Article  CAS  PubMed  Google Scholar 

  2. Chen Y, Zeng C, Zhan Y, Wang H, Jiang X, Li W (2017) Aberrant low expression of p85alpha in stromal fibroblasts promotes breast cancer cell metastasis through exosome-mediated paracrine Wnt10b. Oncogene 36:4692–4705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen H, Li M, Huang P (2019) LncRNA SNHG16 promotes hepatocellular carcinoma proliferation, migration and invasion by regulating miR-186 expression. J Cancer 10:3571–3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen C, Luo Y, He W, Zhao Y, Kong Y, Liu H, Zhong G, Li Y, Li J, Huang J, Chen R, Lin T (2020) Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer. J Clin Invest 130:404–421

    Article  CAS  PubMed  Google Scholar 

  5. Cheng WK, Oon CE (2018) How glycosylation aids tumor angiogenesis: an updated review. Biomed Pharmacother 103:1246–1252

    Article  CAS  PubMed  Google Scholar 

  6. Cheng C, Zhang Z, Cheng F, Shao Z (2020) Exosomal lncRNA RAMP2-AS1 derived from Chondrosarcoma cells promotes angiogenesis through miR-2355-5p/VEGFR2 axis. Onco Targets Ther 13:3291–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–2576

    Article  CAS  PubMed  Google Scholar 

  8. Fang JH, Zhang ZJ, Shang LR, Luo YW, Lin YF, Yuan Y, Zhuang SM (2018) Hepatoma cell-secreted exosomal microRNA-103 increases vascular permeability and promotes metastasis by targeting junction proteins. Hepatology 68:1459–1475

    Article  CAS  PubMed  Google Scholar 

  9. Greten TF, Wang XW, Korangy F (2015) Current concepts of immune based treatments for patients with HCC: from basic science to novel treatment approaches. Gut 64:842–848

    Article  CAS  PubMed  Google Scholar 

  10. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y et al (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hou ZH, Xu XW, Fu XY, Zhou LD, Liu SP, Tan DM (2020) Long non-coding RNA MALAT1 promotes angiogenesis and immunosuppressive properties of HCC cells by sponging miR-140. Am J Physiol Cell Physiol 318:C649–C663

    Article  PubMed  Google Scholar 

  12. Huang MJ, Hu RH, Chou CH, Hsu CL, Liu YW, Huang J, Hung JS, Lai IR, Juan HF, Yu SL, Wu YM, Huang MC (2015) Knockdown of GALNT1 suppresses malignant phenotype of hepatocellular carcinoma by suppressing EGFR signaling. Oncotarget 6:5650–5665

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hussain MR, Hoessli DC, Fang M (2016) N-acetylgalactosaminyltransferases in cancer. Oncotarget 7:54067–54081

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jung KH, Choi MJ, Hong S, Lee H, Hong SW, Zheng HM, Lee HS, Hong S, Hong SS (2012) HS-116, a novel phosphatidylinositol 3-kinase inhibitor induces apoptosis and suppresses angiogenesis of hepatocellular carcinoma through inhibition of the PI3K/AKT/mTOR pathway. Cancer Lett 316:187–195

    Article  CAS  PubMed  Google Scholar 

  15. Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R (2017) Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karar J, Maity A (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 4:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lang HL, Hu GW, Chen Y, Liu Y, Tu W, Lu YM, Wu L, Xu GH (2017) Glioma cells promote angiogenesis through the release of exosomes containing long non-coding RNA POU3F3. Eur Rev Med Pharmacol Sci 21:959–972

    PubMed  Google Scholar 

  18. Lang HL, Hu GW, Zhang B, Kuang W, Chen Y, Wu L, Xu GH (2017) Glioma cells enhance angiogenesis and inhibit endothelial cell apoptosis through the release of exosomes that contain long non-coding RNA CCAT2. Oncol Rep 38:785–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li R, Teng X, Zhu H, Han T, Liu Q (2019) MiR-4500 regulates PLXNC1 and inhibits papillary thyroid cancer progression. Horm Cancer 10:150–160

    Article  PubMed  Google Scholar 

  20. Li Y, Zhang X, Zheng Q, Zhang Y, Ma Y, Zhu C, Yang L, Peng X, Wang Q, Wang B, Meng X, Li H, Liu J (2020) YAP1 inhibition in HUVECs is associated with released exosomes and increased hepatocarcinoma invasion and metastasis. Mol Ther Nucleic Acids 21:86–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liang Y, Song X, Li Y, Chen B, Zhao W, Wang L, Zhang H, Liu Y, Han D, Zhang N, Ma T, Wang Y, Ye F, Luo D, Li X, Yang Q (2020) LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Mol Cancer 19:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin J, Cao S, Wang Y, Hu Y, Liu H, Li J, Chen J, Li P, Liu J, Wang Q, Zheng L (2018) Long non-coding RNA UBE2CP3 enhances HCC cell secretion of VEGFA and promotes angiogenesis by activating ERK1/2/HIF-1alpha/VEGFA signalling in hepatocellular carcinoma. J Exp Clin Cancer Res 37:113

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lin XJ, Fang JH, Yang XJ, Zhang C, Yuan Y, Zheng L, Zhuang SM (2018) Hepatocellular carcinoma cell-secreted exosomal microRNA-210 promotes angiogenesis in vitro and in vivo. Mol Ther Nucleic Acids 11:243–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin Q, Zheng H, Xu J, Zhang F, Pan H (2019) LncRNA SNHG16 aggravates tumorigenesis and development of hepatocellular carcinoma by sponging miR-4500 and targeting STAT3. J Cell Biochem. https://doi.org/10.1002/jcb.28440

  25. Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK (2019) Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer 18:75

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peng, W., Dong, N., Wu, S., Gui, D., Ye, Z., Wu, H., and Zhong, X. (2019) miR-4500 suppresses cell proliferation and migration in bladder cancer via inhibition of STAT3/CCR7 pathway. J Cell Biochem

  27. Phelan CM, Tsai YY, Goode EL, Vierkant RA, Fridley BL, Beesley J, Chen XQ, Webb PM, Chanock S, Cramer DW, Moysich K, Edwards RP, Chang-Claude J, Garcia-Closas M, Yang H, Wang-Gohrke S, Hein R, Green AC, Lissowska J et al (2010) Polymorphism in the GALNT1 gene and epithelial ovarian cancer in non-Hispanic white women: the Ovarian Cancer Association Consortium. Cancer Epidemiol Biomarkers Prev 19:600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  CAS  PubMed  Google Scholar 

  29. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887

    Article  CAS  PubMed  Google Scholar 

  30. Qiu JJ, Lin XJ, Tang XY, Zheng TT, Lin YY, Hua KQ (2018) Exosomal metastasis associated lung adenocarcinoma transcript 1 promotes angiogenesis and predicts poor prognosis in epithelial ovarian cancer. Int J Biol Sci 14:1960–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sasaki R, Kanda T, Yokosuka O, Kato N, Matsuoka S, Moriyama M (2019) Exosomes and hepatocellular carcinoma: from bench to bedside. Int J Mol Sci 20

  32. Steinbichler TB, Dudas J, Riechelmann H, Skvortsova II (2017) The role of exosomes in cancer metastasis. Semin Cancer Biol 44:170–181

    Article  CAS  PubMed  Google Scholar 

  33. Sun X, Qian Y, Wang X, Cao R, Zhang J, Chen W, Fang M (2020) LncRNA TRG-AS1 stimulates hepatocellular carcinoma progression by sponging miR-4500 to modulate BACH1. Cancer Cell Int 20:367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tahmasebi Birgani M, Carloni V (2017) Tumor microenvironment, a paradigm in hepatocellular carcinoma progression and therapy. Int J Mol Sci 18

  35. Tanaka S, Arii S (2006) Current status and perspective of antiangiogenic therapy for cancer: hepatocellular carcinoma. Int J Clin Oncol 11:82–89

    Article  CAS  PubMed  Google Scholar 

  36. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang D, Zheng J, Liu X, Xue Y, Liu L, Ma J, He Q, Li Z, Cai H, Liu Y (2019) Knockdown of USF1 inhibits the vasculogenic mimicry of glioma cells via stimulating SNHG16/miR-212-3p and linc00667/miR-429 axis. Mol Ther Nucleic Acids 14:465–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang J, Pu J, Zhang Y, Yao T, Luo Z, Li W, Xu G, Liu J, Wei W, Deng Y (2020) Exosome-transmitted long non-coding RNA SENP3-EIF4A1 suppresses the progression of hepatocellular carcinoma. Aging (Albany NY) 12:11550–11567

    Article  CAS  Google Scholar 

  39. Wu T, Dong X, Yu D, Shen Z, Yu J, Yan S (2018) Natural product pectolinarigenin inhibits proliferation, induces apoptosis, and causes G2/M phase arrest of HCC via PI3K/AKT/mTOR/ERK signaling pathway. Onco Targets Ther 11:8633–8642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu Q, Zhou L, Lv D, Zhu X, Tang H (2019) Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J Hematol Oncol 12:53

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ (2016) Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 126:1152–1162

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xu J, **ao Y, Liu B, Pan S, Liu Q, Shan Y, Li S, Qi Y, Huang Y, Jia L (2020) Exosomal MALAT1 sponges miR-26a/26b to promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway. J Exp Clin Cancer Res 39:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang H, Zhang H, Ge S, Ning T, Bai M, Li J, Li S, Sun W, Deng T, Zhang L, Ying G, Ba Y (2018) Exosome-derived miR-130a activates angiogenesis in gastric cancer by targeting C-MYB in vascular endothelial cells. Mol Ther 26:2466–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu DD, Wu Y, Shen HY, Lv MM, Chen WX, Zhang XH, Zhong SL, Tang JH, Zhao JH (2015) Exosomes in development, metastasis and drug resistance of breast cancer. Cancer Sci 106:959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu FY, Tu Y, Deng Y, Guo C, Ning J, Zhu Y, Lv X, Ye H (2016) MiR-4500 is epigenetically downregulated in colorectal cancer and functions as a novel tumor suppressor by regulating HMGA2. Cancer Biol Ther 17:1149–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yukawa H, Suzuki K, Aoki K, Arimoto T, Yasui T, Kaji N, Ishikawa T, Ochiya T, Baba Y (2018) Imaging of angiogenesis of human umbilical vein endothelial cells by uptake of exosomes secreted from hepatocellular carcinoma cells. Scientific reports 8:6765

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, Zhou K, Liu X, Ren X, Wang F, Hu J, Zhu X, Yang W, Liao W, Li G, Ding Y, Liang L (2018) Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun 9:5395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang HH, Zhang Y, Cheng YN, Gong FL, Cao ZQ, Yu LG, Guo XL (2018) Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo. Mol Carcinog 57:44–56

    Article  CAS  PubMed  Google Scholar 

  49. Zhang G, Ma A, ** Y, Pan G, Wang C (2019) LncRNA SNHG16 induced by TFAP2A modulates glycolysis and proliferation of endometrial carcinoma through miR-490-3p/HK2 axis. Am J Transl Res 11:7137–7145

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang S, Du L, Wang L, Jiang X, Zhan Y, Li J, Yan K, Duan W, Zhao Y, Wang L, Wang Y, Shi Y, Wang C (2019) Evaluation of serum exosomal LncRNA-based biomarker panel for diagnosis and recurrence prediction of bladder cancer. J Cell Mol Med 23:1396–1405

    Article  CAS  PubMed  Google Scholar 

  51. Zheng R, Du M, Wang X, Xu W, Liang J, Wang W, Lv Q, Qin C, Chu H, Wang M, Yuan L, Qian J, Zhang Z (2018) Exosome-transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol Cancer 17:143

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zheng Y, Hasan A, Nejadi Babadaei MM, Behzadi E, Nouri M, Sharifi M, Falahati M (2020) Exosomes: multiple-targeted multifunctional biological nanoparticles in the diagnosis, drug delivery, and imaging of cancer cells. Biomed Pharmacother 129:110442

    Article  CAS  PubMed  Google Scholar 

  53. Zhong JH, **ang X, Wang YY, Liu X, Qi LN, Luo CP, Wei WE, You XM, Ma L, **ang BD, Li LQ (2020) The lncRNA SNHG16 affects prognosis in hepatocellular carcinoma by regulating p62 expression. J Cell Physiol 235:1090–1102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thank you for the editors and reviewers for their helpful comments on this paper.

Funding

This work was supported by grants from the National Natural Science Foundation of China (81772277) and the distinguished professor of Liaoning Province.

Author information

Authors and Affiliations

Authors

Contributions

Shuangda Li and Yu Qi performed in vitro and in vivo experiments and wrote the manuscript. Yiran Huang and Tong Huang conducted cell culture and transfection in this study. Shuangda Li and Yanru Guo collected the clinical samples and supported the analysis of data. Li Jia conceived and supervised this research. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Li Jia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• SNHG16 was upregulated in HCC tissues, HCC cells, and HCC exosomes.

• Exosomal SNHG16 promoted HUVEC angiogenesis in vitro and in vivo.

• SNHG16 acted as a ceRNA by sponging miR-4500 and regulated GALNT1 expression.

• Exomal SNHG16 activated PI3K/Akt/mTOR pathway in HUVECs.

Supplementary information

Fig. S1

Exosomal SNHG16 was upregulated in the plasma of HCC patients. a Exosomes were isolated from the plasma of HCC patients (n=10) and plasma samples undergoing physical examination during the same period (n= 10), the images produced by transmission electron microscopy were shown. b Relative SNHG16 expression in plasma exosomes was detected by qRT-PCR. *p< 0.05. (PNG 777 kb)

High Resolution Image (TIF 2038 kb)

Fig. S2

SNHG16 facilitates the G2/M transition in HUVECs. a the G2/M transition in treated HUVECs was deteced by cycle cell analysis. b The corresponding quantitative analyses were shown. Each experiment was repeated three times. *p< 0.05. (PNG 1683 kb)

High Resolution Image (TIF 520 kb)

Fig. S3

PI3K/AKT/mTOR inhibitors could inhibit HUVEs proliferation when exo-SNHG16-Huh-7 is added. a, b The ability of HUVECs proliferation was tested by using colony formation assay and CCK-8 assay. Each experiment was repeated three times. *p< 0.05. (PNG 949 kb)

High Resolution Image (TIF 1023 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Qi, Y., Huang, Y. et al. Exosome-derived SNHG16 sponging miR-4500 activates HUVEC angiogenesis by targeting GALNT1 via PI3K/Akt/mTOR pathway in hepatocellular carcinoma. J Physiol Biochem 77, 667–682 (2021). https://doi.org/10.1007/s13105-021-00833-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-021-00833-w

Keywords

Navigation