Log in

The emerging role of circular RNAs in cardiovascular diseases

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) is one of the vital causes of morbidity and mortality, and the number of deaths from CVD has increased worldwide. Circular RNAs (circRNAs) is a novel type of endogenous noncoding RNA, which can form covalent closed continuous rings and are highly expressed in the eukaryotic transcriptome. In recent years, research on circRNAs have been increasing and the researchers have also become cumulatively aware of the association between circRNAs and CVD. This review highlights the biogenesis and functions of circRNAs and the role in cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CVD:

Cardiovascular disease

circRNAs:

Circular RNAs

EIciRNAs:

Exon-intron circRNAs

ciRNAs:

Circular intronic RNAs

ciRS-7:

Circular RNA sponge for miR-7

SR:

Serine-arginine

hnRNP:

Heterogeneous nuclear ribonucleoprotein

Pol II:

Polymerase II

snRNPs:

Small nuclear ribonucleoproteins

CDK2:

Cyclin-dependent kinase 2

HUVECs:

Human umbilical vein endothelial cells

cANRIL:

Circular antisense noncoding RNA in the INK4 locus

SNPs:

Single nucleotide polymorphisms

PES1:

Pescadillo homologue 1

TAC:

Thoracic aortic constriction

HRCR:

Heart-related circRNA

IGF-1:

Insulin-like growth factors-1

NRG-1-ICD:

Neuregulin-1 intracellular domain

α-SMA:

Smooth muscle α-actin

EH:

Essential hypertension

TGF:

Transforming growth factor

References

  1. AbuQattam A, Serrano-Quílez J, Rodríguez-Navarro S, Gallego J (2018) An exon three-way junction structure modulates splicing and degradation of the SUS1 yeast pre-mRNA. Biochim Biophys Acta Gene Regul Mech 1861:673–686. https://doi.org/10.1016/j.bbagrm.2018.06.009

    Article  CAS  PubMed  Google Scholar 

  2. Adamcova M, Simko F (2018) Multiplex biomarker approach to cardiovascular diseases. Acta Pharmacol Sin 39:1068–1072. https://doi.org/10.1038/aps.2018.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akhter R (2018) Circular RNA and Alzheimer’s disease. Adv Exp Med Biol 1087:239–243. https://doi.org/10.1007/978-981-13-1426-1_19

    Article  CAS  PubMed  Google Scholar 

  4. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66. https://doi.org/10.1016/j.molcel.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  5. Bao X, Zheng S, Mao S, Gu T, Liu S, Sun J, Zhang L (2018) A potential risk factor of essential hypertension in case-control study: circular RNA hsa_circ_0037911. Biochem Biophys Res Commun 498:789–794. https://doi.org/10.1016/j.bbrc.2018.03.059

    Article  CAS  PubMed  Google Scholar 

  6. Bis** E, Wakula P, Poteser M, Heinzel FR (2014) Targeting cardiac hypertrophy: toward a causal heart failure therapy. J Cardiovasc Pharmacol 64:293–305. https://doi.org/10.1097/fjc.0000000000000126

    Article  CAS  PubMed  Google Scholar 

  7. Bitton D, Atkinson S, Rallis C, Smith G, Ellis D, Chen Y, Malecki M, Codlin S, Lemay J, Cotobal C, Bachand F, Marguerat S, Mata J, Bähler J (2015) Widespread exon skip** triggers degradation by nuclear RNA surveillance in fission yeast. Genome Res 25:884–896. https://doi.org/10.1101/gr.185371.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57:660–671. https://doi.org/10.1007/s00125-014-3171-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6:e1001233. https://doi.org/10.1371/journal.pgen.1001233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cech T (1990) Self-splicing of group I introns. Annu Rev Biochem 59:543–568. https://doi.org/10.1146/annurev.bi.59.070190.002551

    Article  CAS  PubMed  Google Scholar 

  11. Chen J, Zou Q, Lv D, Wei Y, Raza MA, Chen Y, Li P, ** X, Xu H, Wen A, Zhu L, Tang G, Li M, Jiang A, Liu Y, Fu Y, Jiang Y, Li X (2018) Comprehensive transcriptional landscape of porcine cardiac and skeletal muscles reveals differences of aging. Oncotarget 9:1524–1541. https://doi.org/10.18632/oncotarget.23290

    Article  PubMed  Google Scholar 

  12. Chen LH, Chiou GY, Chen YW, Li HY, Chiou SH (2010) MicroRNA and aging: a novel modulator in regulating the aging network. Ageing Res Rev 9(Suppl 1):S59–S66. https://doi.org/10.1016/j.arr.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  13. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211. https://doi.org/10.1038/nrm.2015.32

    Article  CAS  PubMed  Google Scholar 

  14. Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12:381–388. https://doi.org/10.1080/15476286.2015.1020271

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen X, Han P, Zhou T, Guo X, Song X, Li Y (2016) circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep 6:34985. https://doi.org/10.1038/srep34985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng X, Joe B (2017) Circular RNAs in rat models of cardiovascular and renal diseases. Physiol Genomics 49:484–490. https://doi.org/10.1152/physiolgenomics.00064.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cirrik S, S-S GW (2018) IGF-1 receptor cleavage in hypertension. Hypertens Res 41:406–413. https://doi.org/10.1038/s41440-018-0023-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160:1125–1134. https://doi.org/10.1016/j.cell.2015.02.014

    Article  CAS  PubMed  Google Scholar 

  19. Dang R, Liu F, Li Y (2017) Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis. Biochem Biophys Res Commun 490:104–110. https://doi.org/10.1016/j.bbrc.2017.05.164

    Article  CAS  PubMed  Google Scholar 

  20. Dang RY, Liu FL, Li Y (2017) Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1alpha axis. Biochem Biophys Res Commun 490:104–110. https://doi.org/10.1016/j.bbrc.2017.05.164

    Article  CAS  PubMed  Google Scholar 

  21. Donlon TA, Curb JD, He Q, Grove JS, Masaki KH, Rodriguez B, Elliott A, Willcox DC, Willcox BJ (2012) FOXO3 gene variants and human aging: coding variants may not be key players. J Gerontol A Biol Sci Med Sci 67:1132–1139. https://doi.org/10.1093/gerona/gls067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Du W, Yang W, Chen Y, Wu Z, Foster F, Yang Z, Li X, Yang B (2017) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38:1402–1412. https://doi.org/10.1093/eurheartj/ehw001

    Article  CAS  PubMed  Google Scholar 

  23. Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, Yang BB (2017) Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 24:357–370. https://doi.org/10.1038/cdd.2016.133

    Article  CAS  PubMed  Google Scholar 

  24. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44:2846–2858. https://doi.org/10.1093/nar/gkw027

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dudekula D, Panda A, Grammatikakis I, De S, Abdelmohsen K, Gorospe M (2016) CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13:34–42. https://doi.org/10.1080/15476286.2015.1128065

    Article  PubMed  Google Scholar 

  26. Eger N, Schoppe L, Schuster S, Laufs U, Boeckel J (2018) Circular RNA splicing. Adv Exp Med Biol 1087:41–52. https://doi.org/10.1007/978-981-13-1426-1_4

    Article  CAS  PubMed  Google Scholar 

  27. Gallego-Colon E, Sampson RD, Sattler S, Schneider MD, Rosenthal N, Tonkin J (2015) Cardiac-restricted IGF-1Ea overexpression reduces the early accumulation of inflammatory myeloid cells and mediates expression of extracellular matrix remodelling genes after myocardial infarction. Mediat Inflamm 2015:484357–484310. https://doi.org/10.1155/2015/484357

    Article  CAS  Google Scholar 

  28. Ghosal S, Das S, Sen R, Basak P, Chakrabarti J (2013) Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet 4:283. https://doi.org/10.3389/fgene.2013.00283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. Rna 20:1666–1670. https://doi.org/10.1261/rna.043687.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta SK, Piccoli MT, Thum T (2014) Non-coding RNAs in cardiovascular ageing. Ageing Res Rev 17:79–85. https://doi.org/10.1016/j.arr.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  31. Hasdai D, Rizza R, Holmes D, Richardson D, Cohen P, Lerman A (1998) Insulin and insulin-like growth factor-I cause coronary vasorelaxation in vitro. Hypertension 32:228–234. https://doi.org/10.1161/01.hyp.32.2.228

    Article  CAS  PubMed  Google Scholar 

  32. Higashi Y, Gautam S, Delafontaine P, Sukhanov S (2019) IGF-1 and cardiovascular disease. Growth Hormon IGF Res 45:6–16. https://doi.org/10.1016/j.ghir.2019.01.002

    Article  CAS  Google Scholar 

  33. Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, Gabel G, Beutner F, Scholz M, Thiery J, Musunuru K, Krohn K, Mann M, Teupser D (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429. https://doi.org/10.1038/ncomms12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang JL, Qin MC, Zhou Y, Xu ZH, Yang SM, Zhang F, Zhong J, Liang MK, Chen B, Zhang WY, Wu DP, Zhong ZG (2018) Comprehensive analysis of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in an Alzheimer’s disease mouse model. Aging (Albany NY) 10:253–265. https://doi.org/10.18632/aging.101387

    Article  CAS  Google Scholar 

  35. Huang X, Chen Y, **ao J, Huang Z, He L, Xu D, Peng J (2018) Identification of differentially expressed circular RNAs during TGF-ss1-induced endothelial-to-mesenchymal transition in rat coronary artery endothelial cells. Anatol J Cardiol 19:192–197. https://doi.org/10.14744/AnatolJCardiol.2018.95142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Janga S, Mittal N (2011) Construction, structure and dynamics of post-transcriptional regulatory network directed by RNA-binding proteins. Adv Exp Med Biol 722:103–117. https://doi.org/10.1007/978-1-4614-0332-6_7

    Article  CAS  PubMed  Google Scholar 

  37. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461. https://doi.org/10.1038/nbt.2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. Rna 19:141–157. https://doi.org/10.1261/rna.035667.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang J, Yang Y, Jiang R (2016) Regulating mechanisms of circRNA and their relationship with cardiovascular diseases. Zhonghua **n Xue Guan Bing Za Zhi 44:364–366. https://doi.org/10.3760/cma.j.issn.0253-3758.2016.04.021

    Article  CAS  PubMed  Google Scholar 

  40. Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, Mente A, Yusuf S (2017) Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ Res 121:677–694. https://doi.org/10.1161/circresaha.117.308903

    Article  CAS  PubMed  Google Scholar 

  41. Jost I, Shalamova LA, Gerresheim GK, Niepmann M, Bindereif A, Rossbach O (2018) Functional sequestration of microRNA-122 from hepatitis C virus by circular RNA sponges. RNA Biol 15:1032–1039. https://doi.org/10.1080/15476286.2018.1435248

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jufri NF, Mohamedali A, Avolio A, Baker MS (2015) Mechanical stretch: physiological and pathological implications for human vascular endothelial cells. Vasc Cell 7:8. https://doi.org/10.1186/s13221-015-0033-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, Wilusz JE (2015) Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev 29:2168–2182. https://doi.org/10.1101/gad.270421.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. Rna 20:1829–1842. https://doi.org/10.1261/rna.047126.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lei W, Feng T, Fang X, Yu Y, Yang J, Zhao ZA, Liu J, Shen Z, Deng W, Hu S (2018) Signature of circular RNAs in human induced pluripotent stem cells and derived cardiomyocytes. Stem Cell Res Ther 9:56. https://doi.org/10.1186/s13287-018-0793-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li CY, Ma L, Yu B (2017) Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis. Biomed Pharmacother 95:1514–1519. https://doi.org/10.1016/j.biopha.2017.09.064

    Article  CAS  PubMed  Google Scholar 

  47. Li F, Zhang L, Li W, Deng J, Zheng J, An M, Lu J, Zhou Y (2015) Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway. Oncotarget 6:6001–6013. https://doi.org/10.18632/oncotarget.3469

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li H, Wei X, Yang J, Dong D, Hao D, Huang Y, Lan X, Plath M, Lei C, Ma Y, Lin F, Bai Y, Chen H (2018) circFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of Wnt3a. Mol Ther Nucleic Acids 11:272–283. https://doi.org/10.1016/j.omtn.2018.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li S, Li Y, Chen B, Zhao J, Yu S, Tang Y, Zheng Q, Li Y, Wang P, He X, Huang S (2018) exoRBase: a database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res 46:D106–d112. https://doi.org/10.1093/nar/gkx891

    Article  CAS  PubMed  Google Scholar 

  50. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256–264. https://doi.org/10.1038/nsmb.2959

    Article  CAS  PubMed  Google Scholar 

  51. Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28:2233–2247. https://doi.org/10.1101/gad.251926.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin H, Yue Y, Maidana DE, Bouzika P, Atik A, Matsumoto H, Miller JW, Vavvas DG (2016) Drug delivery nanoparticles: toxicity comparison in retinal pigment epithelium and retinal vascular endothelial cells. Semin Ophthalmol 31:1–9. https://doi.org/10.3109/08820538.2015.1114865

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu M, Wang Q, Shen J, Yang B, Ding X (2019) Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol 16:899–905. https://doi.org/10.1080/15476286.2019.1600395

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu W, Ma W, Yuan Y, Zhang Y, Sun S (2018) Circular RNA hsa_circRNA_103809 promotes lung cancer progression via facilitating ZNF121-dependent MYC expression by sequestering miR-4302. Biochem Biophys Res Commun 500:846–851. https://doi.org/10.1016/j.bbrc.2018.04.172

    Article  CAS  PubMed  Google Scholar 

  55. Liu YC, Li JR, Sun CH, Andrews E, Chao RF, Lin FM, Weng SL, Hsu SD, Huang CC, Cheng C, Liu CC, Huang HD (2016) CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res 44:D209–D215. https://doi.org/10.1093/nar/gkv940

    Article  CAS  PubMed  Google Scholar 

  56. Mattick J (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2:986–991. https://doi.org/10.1093/embo-reports/kve230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mehta S, Dempsey R, Vemuganti R (2020) Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol 186:101746. https://doi.org/10.1016/j.pneurobio.2020.101746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338. https://doi.org/10.1038/nature11928

    Article  CAS  PubMed  Google Scholar 

  59. Molina-Sánchez M, Martinez-Abarca F, Toro N (2006) Excision of the Sinorhizobium meliloti group II intron RmInt1 as circles in vivo. J Biol Chem 281:28737–28744. https://doi.org/10.1074/jbc.M602695200

    Article  CAS  PubMed  Google Scholar 

  60. Pan RY, Liu P, Zhou HT, Sun WX, Song J, Shu J, Cui GJ, Yang ZJ, Jia EZ (2017) Circular RNAs promote TRPM3 expression by inhibiting hsa-miR-130a-3p in coronary artery disease patients. Oncotarget 8:60280–60290. https://doi.org/10.18632/oncotarget.19941

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pyle A (2016) Group II intron self-splicing. Annu Rev Biophys 45:183–205. https://doi.org/10.1146/annurev-biophys-062215-011149

    Article  CAS  PubMed  Google Scholar 

  62. Rodríguez-Trelles F, Tarrío R, Ayala F (2006) Origins and evolution of spliceosomal introns. Annu Rev Genet 40:47–76. https://doi.org/10.1146/annurev.genet.40.110405.090625

    Article  CAS  PubMed  Google Scholar 

  63. Rodriguez BV, Malczewskyj ET, Cabiya JM, Lewis LK, Maeder C (2016) Identification of RNase-resistant RNAs in Saccharomyces cerevisiae extracts: Separation from chromosomal DNA by selective precipitation. Anal Biochem 492:69–75. https://doi.org/10.1016/j.ab.2015.09.017

    Article  CAS  PubMed  Google Scholar 

  64. Salgado-Somoza A, Zhang L, Vausort M, Devaux Y (2017) The circular RNA MICRA for risk stratification after myocardial infarction. Int J Cardiol Heart Vasc 17:33–36. https://doi.org/10.1016/j.ijcha.2017.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  65. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7:e30733. https://doi.org/10.1371/journal.pone.0030733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sang M, Meng L, Sang Y, Liu S, Ding P, Ju Y, Liu F, Gu L, Lian Y, Li J, Wu Y, Zhang X, Shan B (2018) Circular RNA ciRS-7 accelerates ESCC progression through acting as a miR-876-5p sponge to enhance MAGE-A family expression. Cancer Lett 426:37–46. https://doi.org/10.1016/j.canlet.2018.03.049

    Article  CAS  PubMed  Google Scholar 

  67. Shang FF, Luo S, Liang X, **a Y (2018) Alterations of circular RNAs in hyperglycemic human endothelial cells. Biochem Biophys Res Commun 499:551–555. https://doi.org/10.1016/j.bbrc.2018.03.187

    Article  CAS  PubMed  Google Scholar 

  68. Sun M, An Q, Chen L, Guo L (2020) MIR-520f regulated itch expression and promoted cell proliferation in human melanoma cells. Dose-Response 18:1559325820918450. https://doi.org/10.1177/1559325820918450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun Y, Yang Z, Zheng B, Zhang XH, Zhang ML, Zhao XS, Zhao HY, Suzuki T, Wen JK (2017) A novel regulatory mechanism of smooth muscle alpha-actin expression by NRG-1/circACTA2/miR-548f-5p axis. Circ Res 121:628–635. https://doi.org/10.1161/circresaha.117.311441

    Article  CAS  PubMed  Google Scholar 

  70. Tan WL, Lim BT, Anene-Nzelu CG, Ackers-Johnson M, Dashi A, See K, Tiang Z, Lee DP, Chua WW, Luu TD, Li PY, Richards AM, Foo RS (2017) A landscape of circular RNA expression in the human heart. Cardiovasc Res 113:298–309. https://doi.org/10.1093/cvr/cvw250

    Article  CAS  PubMed  Google Scholar 

  71. Tang CM, Zhang M, Huang L, Hu ZQ, Zhu JN, **ao Z, Zhang Z, Lin QX, Zheng XL, Yang M, Wu SL, Cheng JD, Shan ZX (2017) CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 7:40342. https://doi.org/10.1038/srep40342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tatomer D, Liang D, Wilusz J (2017) Inducible expression of eukaryotic circular RNAs from plasmids. Methods Mol Biol 1648:143–154. https://doi.org/10.1007/978-1-4939-7204-3_11

    Article  CAS  PubMed  Google Scholar 

  73. Toptan T, Abere B, Nalesnik M, Swerdlow S, Ranganathan S, Lee N, Shair K, Moore P, Chang Y (2018) Circular DNA tumor viruses make circular RNAs. Proc Natl Acad Sci U S A 115:E8737–E8745. https://doi.org/10.1073/pnas.1811728115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang K, Gan T, Li N, Liu C, Zhou L, Gao J, Chen C, Yan K, Ponnusamy M, Zhang Y, Li P (2017) Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ 24:1111–1120. https://doi.org/10.1038/cdd.2017.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B, Zhou LY, Sun T, Wang M, Yu T, Gong Y, Liu J, Dong YH, Li N, Li PF (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37:2602–2611. https://doi.org/10.1093/eurheartj/ehv713

    Article  CAS  PubMed  Google Scholar 

  76. Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, Dinneny JR, Brown PO, Salzman J (2014) Circular RNA is expressed across the eukaryotic tree of life. PLoS One 9:e90859. https://doi.org/10.1371/journal.pone.0090859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang YS, Zhou J, Hong K, Cheng XS, Li YG (2015) MicroRNA-223 displays a protective role against cardiomyocyte hypertrophy by targeting cardiac troponin I-interacting kinase. Cell Physiol Biochem 35:1546–1556. https://doi.org/10.1159/000373970

    Article  CAS  PubMed  Google Scholar 

  78. Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17:1410–1422. https://doi.org/10.1038/nm.2538

    Article  CAS  PubMed  Google Scholar 

  79. Wilusz JE, Sharp PA (2013) Molecular biology. A circuitous route to noncoding RNA. Science 340:440–441. https://doi.org/10.1126/science.1238522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu N, ** L, Cai J (2017) Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens 39:454–459. https://doi.org/10.1080/10641963.2016.1273944

    Article  CAS  PubMed  Google Scholar 

  81. **a S, Feng J, Chen K, Ma Y, Gong J, Cai F, ** Y, Gao Y, **a L, Chang H, Wei L, Han L, He C (2018) CSCD: a database for cancer-specific circular RNAs. Nucleic Acids Res 46:D925–d929. https://doi.org/10.1093/nar/gkx863

    Article  CAS  PubMed  Google Scholar 

  82. **e YZ, Yang F, Tan W, Li X, Jiao C, Huang R, Yang BB (2016) The anti-cancer components of Ganoderma lucidum possesses cardiovascular protective effect by regulating circular RNA expression. Oncoscience 3:203–207. https://doi.org/10.18632/oncoscience.316

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ye S, Willeit J, Kronenberg F, Xu Q, Kiechl S (2008) Association of genetic variation on chromosome 9p21 with susceptibility and progression of atherosclerosis: a population-based, prospective study. J Am Coll Cardiol 52:378–384. https://doi.org/10.1016/j.jacc.2007.11.087

    Article  CAS  PubMed  Google Scholar 

  84. Zang J, Lu D, Xu A (2020) The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function. J Neurosci Res 98:87–97. https://doi.org/10.1002/jnr.24356

    Article  CAS  PubMed  Google Scholar 

  85. Zhang X, Qiu S, Luo P, Zhou H, **g W, Liang C, Tu J (2018) Down-regulation of hsa_circ_0001649 in hepatocellular carcinoma predicts a poor prognosis. Cancer Biomark 22:135–142. https://doi.org/10.3233/cbm-171109

    Article  CAS  PubMed  Google Scholar 

  86. Zhang Y, Yang L, Chen LL (2014) Life without A tail: new formats of long noncoding RNAs. Int J Biochem Cell Biol 54:338–349. https://doi.org/10.1016/j.biocel.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Y, Zhang XO, Chen T, **ang JF, Yin QF, **ng YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806. https://doi.org/10.1016/j.molcel.2013.08.017

    Article  CAS  PubMed  Google Scholar 

  88. Zhao Z, Li X, Gao C, Jian D, Hao P, Rao L, Li M (2017) Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep 7:39918. https://doi.org/10.1038/srep39918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhao Z, Wang K, Wu F, Wang W, Zhang K, Hu H, Liu Y, Jiang T (2018) circRNA disease: a manually curated database of experimentally supported circRNA-disease associations. Cell Death Dis 9:475. https://doi.org/10.1038/s41419-018-0503-3

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zheng LL, Li JH, Wu J, Sun WJ, Liu S, Wang ZL, Zhou H, Yang JH, Qu LH (2016) deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Res 44:D196–D202. https://doi.org/10.1093/nar/gkv1273

    Article  CAS  PubMed  Google Scholar 

  91. Zhou B, Yu JW (2017) A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1. Biochem Biophys Res Commun 487:769–775. https://doi.org/10.1016/j.bbrc.2017.04.044

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by Young Elite Scientists Sponsorship Program by CAST (No. CACM-2018-QNRC2-B04) and Young Prominant Medical Professionals Program by Tian**.

Author information

Authors and Affiliations

Authors

Contributions

Yuejia Ding and Chunmiao Lu wrote the paper. Wanqin Zhang, Yuan Wang, and Yanyang Li made the literature selection. Shichao Lv, Ya** Zhu, and Jun** Zhang revised the paper.

The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding authors

Correspondence to Shichao Lv or Jun** Zhang.

Ethics declarations

Ethics approval

Not applicable.

Informed consent

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• CircRNAs exhibit important functions in cardiovascular disease.

• The biogenesis of circRNAs can be divided into two ways

• CircRNAs may become therapeutic targets for cardiovascular diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Lu, C., Zhang, W. et al. The emerging role of circular RNAs in cardiovascular diseases. J Physiol Biochem 77, 343–353 (2021). https://doi.org/10.1007/s13105-021-00807-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-021-00807-y

Keywords

Navigation