Log in

Identification and characterization of SNPs in released, landrace and wild accessions of mungbean (Vigna radiata (L.) Wilczek) using whole genome re-sequencing

  • Original Research
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Mungbean [Vigna radiata (L.) R. Wilczek var. radiata] is vital grain legume having nutritional and socio-economic importance, especially in the develo** countries. We performed whole-genome re-sequencing of three accessions representing the wild progenitor species, released and landrace of mungbean to identify SNPs with relevance to genetic relationships analysis. Approximately 9.3 million raw reads were obtained using Ion Torrent PGM™ platform and more than 92% of the reads were mapped to the reference mungbean genome. We identified a total of 233,799 single-nucleotide polymorphisms in relation to the reference genome (SNPs: 103,341 in wild, 93,078 in released and 37,380 in landrace accessions) and 9544 insertions and deletions (InDels: 4742 in wild, 3608 in released and 1194 in landrace accessions) in the coding and non-coding regions. In all accessions, genomic variants were unevenly distributed within and across the mungbean chromosomes. Among these 5339, 4739 and 1795 SNPs were non-synonymous in 815, 790 and 317 genes of wild, released and landrace accessions, respectively. These polymorphisms might contribute to the variation in important pathways of genes for abiotic and biotic stress tolerance and important agronomic traits, such as seed dormancy, flowering time and seed size in mungbean. Among the randomly selected SNPs, a selected subset was validated using Sanger sequencing technique. The genomic variations among mungbean wild, released and landrace accessions constitute a powerful tool to support genetic research and molecular breeding of mungbean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allito BB, Nana EM, Alemneh AA (2015) Rhizobia strain and legume genome interaction effects on nitrogen fixation and yield of grain legume: a review. Mol Soil Biol 20:6

    Google Scholar 

  • Bangar P, Chaudhury A, Umdale S, Kumari R, Tiwari B, Kumar S, Gaikwad AB, Bhat KV (2018) Detection and characterization of polymorphic simple sequence repeats markers for the analysis of genetic diversity in Indian mungbean [Vigna radiata (L.) Wilczek]. Indian J Genet Plant Breed 78:111–117

    Google Scholar 

  • Bangar P, Chaudhury A, Tiwari B, Kumar S, Kumari R, Bhat KV (2019) Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. Turk J Biol 43:58–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotech J 14:070–1085

    Google Scholar 

  • Chankaew S, Somta P, Sorajjapinun W, Srinives P (2011) Quantitative trait loci map** of Cercospora leaf spot resistance in mungbean, Vigna radiata (L.) Wilczek. Mol Breed 28:255–264

    Google Scholar 

  • Chen H, Qiao L, Wang L, Wang S, Blair MW, Cheng X (2015) Assessment of genetic diversity and population structure of mung bean (Vigna radiata) germplasm using EST-based and genomic SSR markers. Gene 566:175–183

    CAS  PubMed  Google Scholar 

  • Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and Indels. PLoS ONE 7:e46688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clevenger J, Chavarro C, Pearl SA, Ozias-Akins P, Jackson SA (2015) Single nucleotide polymorphism identification in polyploids: A Review, Example, and Recommendations. Mol Plant 8:831–846

    CAS  PubMed  Google Scholar 

  • Corrado G, Piffanelli P, Caramante M, Coppola M, Rosa Rao R (2013) SNP genoty** reveals genetic diversity between cultivated landraces and contemporary varieties of tomato. BMC Genomics 14:835

    PubMed  PubMed Central  Google Scholar 

  • de Folter S et al (2005) Comprehensive interaction map of the Arabidopsis MADS-box transcription factors. Plant Cell 17:1424–1433

    PubMed  PubMed Central  Google Scholar 

  • Fuller DQ, Harvey EL (2006) The archaeobotany of Indian pulses: identification, processing and evidence for cultivation. Environm Archaeol 11:219–246

    Google Scholar 

  • Ganal MW, Altmann T, Roder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    CAS  PubMed  Google Scholar 

  • Gowda CL, Laxmipathi SK, Chaturvedi PM, Gaur CV, Kumar S, Jukanti AK (2015) Pulses research and development strategies for India. 17–33

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Li T, Tang K, Liu RH (2012) Effect of germination on phytochemical profiles and antioxidant activity of mungbean sprouts (Vigna radiata). J Agric Food Chem 60:11050–11055

    CAS  PubMed  Google Scholar 

  • Gwag JG, Dixit A, Park YJ, Ma KH, Kwon SJ, Cho GT, Lee GA, Lee SY, Kang HK, Lee SH (2010) Assessment of genetic diversity and population structure in mungbean. Genes Genom 32:299–308

    Google Scholar 

  • Hawkins C, Caruana J, Schiksnis E, Liu Z (2016) Genome-scale DNA variant analysis and functional validation of a SNP underlying yellow fruit color in wild strawberry. Sci Rep 6:29017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson M, Ringli C, Boylan MT, Quail PH (1999) The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signalling. Genes Dev 13:2017–2027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huq MA, Akter S, Nou S, Kim HT, Jung YJ, Kang KK (2016) Identification of functional SNPs in genes and their effects on plant phenotypes. J Plant Biotechnol 43:1–11

    Google Scholar 

  • Isemura T, Kaga A, Tabata S, Somta P, Srinives P, Shimizu T, Jo U, Vaughan DA, Tomooka N (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS ONE 7:e41304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M, Moharana KC, Shankar R, Kumari R, Garg R (2014) Genome wide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance. Plant Biotech J 12:253–264

    CAS  Google Scholar 

  • Jiao K, Li X, Guo W, Yuan X, Cui X, Chen X (2016) Genome re-sequencing of two accessions and fine map** the locus of lobed leaflet margins in mungbean. Mol Breed 36:128

    Google Scholar 

  • **gade P, Bhosale LV, Sanjayrao JA, Rajanna R, Jain M, Ravikumar RL (2014) Characterization of microsatellite markers, their transferability to orphan legumes and use in determination of genetic diversity among chickpea (Cicer arietinum L.) cultivars. J Crop Sci Biotechnol 17:191–199

    Google Scholar 

  • Jung CH, Wong CE, Singh MB, Bhalla PL (2012) Comparative genomic analysis of soybean flowering genes. PLoS ONE 7:e38250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang YJ et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443

    CAS  PubMed  Google Scholar 

  • Kaur G, Joshi A, Jain D, Choudhary R, Vyas D (2016) Diversity analysis of green gram (Vigna radiata (L.) Wilczek) through morphological and molecular markers. Turk J Agric For 40:229–240

    Google Scholar 

  • Kenneth L et al (2009) Genome wide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106(30):12273–12278

    Google Scholar 

  • Krzywinski M et al (2009) Circos: An information aesthetic for comparative genomics. Genome Res 19:1639–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kujur A et al (2015) Employing genome-wide SNP discovery and genoty** strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Front Plant Sci 6:162

    PubMed  PubMed Central  Google Scholar 

  • Lakhanpaul S, Bhat KV, Chadha S (2000) Random amplified polymorphic DNA analysis in Indian mungbean (Vigna radiata L. Wilczek) cultivars. Genetica 109:227–234

    CAS  PubMed  Google Scholar 

  • Lam HM et al (2010) Re-sequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    CAS  PubMed  Google Scholar 

  • Lambrides CJ, Godwin I (2007) Mungbean. In: Kole C (ed) Genome Map** and Molecular Breeding in Plants Pulses, Sugar and Tuber Crops. Springer, Berlin, pp 69–903

    Google Scholar 

  • Lercher MJ, Hurst LD (2002) Human SNP variability and mutation rate are higher in regions of high recombination. Trends Genet 18:337–340

    CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) 1000 genome project data processing subgroup The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Li YH, Reif JC, Jackson SA, Ma YS, Chang RZ, Qiu LJ (2014) Detecting SNPs underlying domestication-related traits in soybean. BMC Plant Biol 14:251

    PubMed  PubMed Central  Google Scholar 

  • Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14:49–61

    CAS  PubMed  Google Scholar 

  • Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genom 2012:728398. https://doi.org/10.1155/2012/728398

    Article  CAS  Google Scholar 

  • Muñoz N, Liu A, Kan L, Li MW, Lam HM (2017) Potential uses of wild germplasms of grain legumes for crop improvement. Int J Mol Sci 18:328

    PubMed Central  Google Scholar 

  • Natarajan S, Kim HT, Thamilarasan SK, Veerappan K, Park JI, Nou IS (2016) Whole genome re-sequencing and characterization of powdery mildew disease-associated allelic variation in melon. PLoS ONE 11:e0157524

    PubMed  PubMed Central  Google Scholar 

  • Pandey MK et al (2016) Emerging genomic tools for legume breeding: current status and future prospects front. Plant Sci 7:455

    Google Scholar 

  • Sato S et al (2008) Genome structure of the legume Lotus japonicus. DNA Res 15:227–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schafleitner R et al (2016) BMC Plant Biol 16:159

    PubMed  PubMed Central  Google Scholar 

  • Schmutz J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    CAS  PubMed  Google Scholar 

  • Shivakumar MS, Ramesh S, Rao AM, Udaykumar HR, Keerthi CM (2017) Cross legume species/genera transferability of SSR markers and their Utility in assessing polymorphism among advanced breeding lines in Dolichos Bean (Lablab purpureus L.). Int J Curr Microbiol App Sci 6:656–668

    Google Scholar 

  • Shrivastava D, Verma P, Bhatia S (2014) Expanding the repertoire of microsatellite markers for polymorphism studies in Indian accessions of mung bean (Vigna radiata L. Wilczek). Mol Biol Rep 41:5669–5680

    CAS  PubMed  Google Scholar 

  • Singh AK, Singh SS, Prakash V, Kumar SA, Dwivedi SK (2015) Pulses production in India: present status, bottleneck and way forward. J AgriSearch 2:75–83

    Google Scholar 

  • Smartt J (1990) Grain legumes: evolution and genetic resources. Cambridge University Press, UK

    Google Scholar 

  • Tomooka N, Vaughan DA, Moss H, Maxted N (2002) The Asian Vigna: genus Vigna subgenus Ceratotropis genetic resources. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Valliyodan B et al (2016) Landscape of genomic diversity and trait discovery in soybean. Sci Rep 6:23598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van K, Kang YJ, Han KS, Lee YH, Gwag JG, Moon JK, Lee SH (2013) Genome-wide SNP discovery in mungbean by Illumina HiSeq. Theor Appl Genet 126:2017–2027

    CAS  PubMed  Google Scholar 

  • Varshney RK et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    CAS  Google Scholar 

  • Varshney RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    CAS  PubMed  Google Scholar 

  • Vishnu-Mittre B (1974) Palaeobotanical evidence in India. In: Hutchinson J (ed) Evolutionary Studies in World Crops: Diversity and Change in the Indian Sub-continent. Cambridge University Press, Cambridge, pp 3–30

    Google Scholar 

  • Wang X, Weigel D, Smith LM (2013) Transposon variants and their effects on gene expression in Arabidopsis. PLoS Genet 9:e1003255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Zhu X, Yu J, Wang L, Zhang Y, Li D, Zhou R, Zhang X (2016) Identification of sesame genomic variations from genome comparison of landrace and variety. Front Plant Sci 7:1169

    PubMed  PubMed Central  Google Scholar 

  • Wu J, Mao X, Cai T, Luo J, Wei L (2006a) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34(2):W720–W724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Mao X, Cai T, Luo J, Wei L (2006b) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34(2):W720–W724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34(2):293–297

    Google Scholar 

  • Zhang H, Mittal N, Larry J, Barazani LO, Song BH (2017a) Back into the wild—Apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 10:5–24

    PubMed  Google Scholar 

  • Zhang J, Zhao K, Hou D, Cai J, Zhang Q, Cheng T, Pan H, Yang W (2017b) Genome-wide discovery of DNA polymorphisms in Mei (Prunus mume Sieb. et Zucc.), an ornamental woody plant, with contrasting tree architecture and their functional relevance for wee** trait. Plant Mol Biol Rep 35:37–46

    CAS  Google Scholar 

  • Zhang S, Chen W, **n L, Gao Z, Hou Y, Yu X, Zhang Z, Qu S (2014) Genomic variants of genes associated with three horticultural traits in apple revealed by genome re-sequencing. Hort Res 1:14045

    Google Scholar 

Download references

Acknowledgements

The authors thank the Indian Council of Agricultural Research, New Delhi and, Director, National Bureau of Plant Genetic Resources for the facilities provided for the study. The first author, PB acknowledges the DBT Fellowship from The Department of Biotechnology, Ministry of Science & Technology, Government of India, New Delhi for the Ph. D program. The funding for the wet laboratory analysis from CRP on Genomics project of the Indian Council of Agricultural Research, New Delhi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Chaudhury.

Ethics declarations

Conflict of interests

Authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bangar, P., Tyagi, N., Tiwari, B. et al. Identification and characterization of SNPs in released, landrace and wild accessions of mungbean (Vigna radiata (L.) Wilczek) using whole genome re-sequencing. J. Crop Sci. Biotechnol. 24, 153–165 (2021). https://doi.org/10.1007/s12892-020-00067-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-020-00067-0

Keywords

Navigation