Log in

Application of Carbon Dots as Antibacterial Agents: A Mini Review

  • Review
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) are sub-10 nm carbon particles with notable photoluminescence and photoelectrochemical properties, finding diverse applications in optoelectronics, chemistry, and medicine. Their unique physicochemical properties give rise to antimicrobial actions, being realized through complex mechanisms. Discovering the latter was the aim of this review. The primary interaction of CDs with negatively charged bacterial cells is ensured by electrostatic interaction with that because of CDs’ surface positive charge. Hydrophobic forces further contribute to this interaction. Modification of CDs with different alkyl chains enhances their antibacterial effect by balancing positive charge and hydrophobicity, facilitating membrane penetration and causing damage to bacterial cells. Another powerful antibacterial mechanism is the ability of photoexcited CDs to generate reactive oxygen species under visible light, effectively destroying critical biomolecules and inducing cell death. Additionally, the photothermal conversion properties of CDs, allowing them to raise local temperatures upon near-infrared light excitation, result in DNA damage and protein denaturation within bacteria, forming the basis for photothermal therapy. Following infiltration of bacterial walls and membranes, CDs can bind to DNA and RNA in bacteria and fungi through noncovalent interactions, inducing structural changes in DNA and affecting RNA. These multifaceted mechanisms underscore the potential of CDs as versatile antibacterial agents with applications across various biomedical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Kang, Z., & Lee, S. (2019). Carbon dots: Advances in nanocarbons applications. Nanoscale, 11, 19214–19224. https://doi.org/10.1039/C9NR05647E

    Article  Google Scholar 

  2. Liu, M. L., Chen, B. B., Li, C. M., & Huang, C. Z. (2019). Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chemistry, 21, 449. https://doi.org/10.1039/C8GC02736F

    Article  Google Scholar 

  3. Chung, Y. J., Kim, J., & Park, C. B. (2020). Photonic carbon dots as an emerging nanoagent for biomedical and healthcare applications. ACS Nano, 14(6), 6470–6497. https://doi.org/10.1021/acsnano.0c02114

    Article  Google Scholar 

  4. Dong, X., Liang, W., Meziani, M. J., Sun, Y. P., & Yang, L. (2020). Carbon dots as potent antimicrobial agents. Theranostics, 10(2), 671–686. https://doi.org/10.7150/thno.39836

    Article  Google Scholar 

  5. Jia, Q., Zhao, Z., Liang, K., Nan, F., Li, Y., Wang, J., Ge, J., & Wang, P. (2020). Recent advances and prospects of carbon dots in cancer nanotheranostics. Materials Chemistry Frontiers, 4, 449–471. https://doi.org/10.1039/c9qm00667b

    Article  Google Scholar 

  6. Yuan, F., Wang, Z., Li, X., Li, Y., Tan, Z., Fan, L., Yang, S. (2017). Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Advance Materials 29(3). https://doi.org/10.1002/adma.201604436

  7. Wang, Z. F., Yuan, F. L., Li, X. H., Li, Y. C., Zhong, H. Z., Fan, L. Z., & Yang, S. H. (2017). 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Advanced Materials, 29, 1702910. https://doi.org/10.1002/adma.201702910

    Article  Google Scholar 

  8. Shao, J., Zhu, S., Liu, H., Song, Y., Tao, S., & Yang, B. (2017). Full-color emission polymer carbon dots with quench-resistant solid-state fluorescence. Advancement of Science, 4, 1700395. https://doi.org/10.1002/advs.201700395

    Article  Google Scholar 

  9. Feng, T., Zeng, Q., Lu, S., Yan, X., Liu, J., Tao, S., Yang, M., & Yang, B. (2018). Color-tunable carbon dots possessing solid-state emission for full-color light-emitting diodes applications. ACS Photonics, 5, 502–510. https://doi.org/10.1021/acsphotonics.7b01010

    Article  Google Scholar 

  10. Yuan, F., Yuan, T., Sui, L., Wang, Z. B., **, Z. F., Li, Y. C., Li, X. H., Fan, L. Z., Tan, Z., Chen, A., **, M. X., & Yang, S. H. (2018). Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Communications, 9, 2249. https://doi.org/10.1038/s41467-018-04635-5

    Article  Google Scholar 

  11. Paulo-Mirasol, S., Martínez-Ferrero, E., & Palomares, E. (2019). Direct white light emission from carbon nanodots (C-dots) in solution processed light emitting diodes. Nanoscale, 11, 11315–11321. https://doi.org/10.1039/C9NR02268F

    Article  Google Scholar 

  12. Yu, Z., Huang, L., Chen, J., Tang, Y., **a, B., & Tang, D. (2020). Full-spectrum responsive photoelectrochemical immunoassay based on β-In2S3@ carbon dot nanoflowers. Electrochimica Acta, 332, 135473. https://doi.org/10.1016/j.electacta.2019.135473

    Article  Google Scholar 

  13. Peng, Z., Han, X., Li, S., Al-Youbi, A. O., Bashammakh, A. S., El-Shahawi, M. S., & Leblanc, R. M. (2017). Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coordination Chemistry Reviews, 343, 256–277. https://doi.org/10.1016/j.ccr.2017.06.001

    Article  Google Scholar 

  14. Shi, X., Meng, H., Sun, Y., Qu, L., Yang, L., Li, Z., & Du, D. (2019). Far-red to near-infrared carbon dots: Preparation and applications in biotechnology. Small (Weinheim an der Bergstrasse, Germany), 15, 1901507. https://doi.org/10.1002/smll.201901507

    Article  Google Scholar 

  15. Li, D., Wang, D., Zhao, X., **, W., Zebibula, A., Alifu, N., Chen, J.-F., & Qian, J. (2018). Short-wave infrared emitted/excited fluorescence from carbon dots and preliminary applications in bioimaging. Materials Chemistry Frontiers, 2, 1343–1350. https://doi.org/10.1039/C8QM00151K

    Article  Google Scholar 

  16. **ng, Y., Sun, L., Liu, K., Shi, H., Wang, Z., & Wang, W. (2022). Metal-doped carbon dots as peroxidase mimic for hydrogen peroxide and glucose detection. Analytical and Bioanalytical Chemistry, 414(2), 1–11. https://doi.org/10.1007/s00216-022-04149-6

    Article  Google Scholar 

  17. Zhang, J., Yuan, Y., Gao, M., Han, Z., Chu, C., Li, Y., van Zijl, P. C. M., Ying, M., Bulte, J. W. M., & Liu, G. (2019). Carbon dots as a new class of diamagnetic chemical exchange saturation transfer (diaCEST) MRI contrast agents. Angewandte Chemie International Edition, 58, 9871–9875. https://doi.org/10.1002/anie.201902878

    Article  Google Scholar 

  18. Ghai, I., & Ghai, S. (2018). Understanding antibiotic resistance via outer membrane permeability. Infection and Drug Resistance, 11, 523–530. https://doi.org/10.2147/IDR.S156995

    Article  Google Scholar 

  19. Wang, Y. Q., **, Y. Y., Chen, W., Wang, J. J., Chen, H., Sun, L., Li, X., Ji, J., Yu, Q., Shen, L. Y., & Wang, B. L. (2019). Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chemical Engineering Journal, 358, 74–90. https://doi.org/10.1016/j.cej.2018.10.002

    Article  Google Scholar 

  20. Daniel, S., & Sunish, K. S. (2021). Highly luminescent biocompatible doped nano carbon dot composites as efficient antibacterial agents. Composite Interfaces, 28, 1155–1170. https://doi.org/10.1080/09276440.2020.1867466

    Article  Google Scholar 

  21. Tejwan, N., Kundu, M., Ghosh, N., Chatterjee, S., Sharma, A., Abhishek Singh, T., Das, J., & Sil, P. C. (2022). Synthesis of green carbon dots as bioimaging agent and drug delivery system for enhanced antioxidant and antibacterial efficacy. Inorganic Chemistry Communications, 139, 109317. https://doi.org/10.1016/j.inoche.2022.109317

    Article  Google Scholar 

  22. Qi, J., Zhang, R., Liu, X., Liu, Y., Zhang, Q., Cheng, H., Li, R., Wang, L., Wu, X., & Li, B. (2023). Carbon dots as advanced drug-delivery nanoplatforms for antiinflammatory, antibacterial, and anticancer applications: A review. ACS Applied Nano Materials, 6, 9071–9084. https://doi.org/10.1021/acsanm.3c01207

    Article  Google Scholar 

  23. Mishra, V., Patil, A., Thakur, S., & Kesharwani, P. (2018). Carbon dots: Emerging theranostic nanoarchitectures. Drug Discovery Today, 23(6), 1219–1232. https://doi.org/10.1016/j.drudis.2018.03.002

    Article  Google Scholar 

  24. Hu, S. L., Niu, K. Y., Sun, J., Yang, J., Zhao, N. Q., & Du, X. W. (2009). One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. Journal of Materials Chemistry, 19, 484–488. https://doi.org/10.1039/B810043C

    Article  Google Scholar 

  25. Wang, Z., Liao, H., Wu, H., Wang, B., Zhao, H., & Tan, M. (2015). Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery. Analytical Methods, 7, 8911–8917. https://doi.org/10.1039/C5AY01294A

    Article  Google Scholar 

  26. Wang, Y., & Hu, A. (2014). Carbon quantum dots: Synthesis, properties and applications. Journal of Materials Chemistry C, 2, 6921–6939. https://doi.org/10.1039/C4TC00988F

    Article  Google Scholar 

  27. Pan, D., Zhang, J., Li, Z., Zhang, Z., Guo, L., & Wu, M. (2011). Blue fluorescent carbon thin films fabricated from dodecylamine-capped carbon nanoparticles. Journal of Materials Chemistry, 21, 3565–3567. https://doi.org/10.1039/C0JM03763J

    Article  Google Scholar 

  28. Wang, Y., Dong, L., **ong, R., & Hu, A. (2013). Practical access to bandgap-like N-doped carbon dots with dual emission unzipped from PAN@PMMA core–shell nanoparticles. Journal of Materials Chemistry C, 1, 7731–7735. https://doi.org/10.1039/C3TC30949E

    Article  Google Scholar 

  29. Zhou, J., Yang, Y., & Zhang, C.-y. (2013). A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chemical Communications, 49, 8605–8607. https://doi.org/10.1039/C3CC42266F

    Article  Google Scholar 

  30. Sun, C., Zhang, Y., Wang, P., Yang, Y., Wang, Y., Xu, J., Wang, Y., & Yu, W. W. (2016). Synthesis of nitrogen and sulfur Co-doped carbon dots from garlic for selective detection of Fe(3+). Nanoscale Research Letters, 11, 110. https://doi.org/10.1186/s11671-016-1326-8

    Article  Google Scholar 

  31. Ananthanarayanan, A., Wang, Y., Routh, P., Sk, M. A., Than, A., Lin, M., et al. (2015). Nitrogen and phosphorus co doped graphene quantum dots: Synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale, 7(17), 8159–8165. https://doi.org/10.1039/C5NR01519G

    Article  Google Scholar 

  32. Miao, X., Qu, D., Yang, D., Nie, B., Zhao, Y., Fan, H., Sun, Z. (2018). Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Advance Materials, 30(1). https://doi.org/10.1002/adma.201704740

  33. Li, X., Rui, M., Song, J., Shen, Z., & Zeng, H. (2015). Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Advanced Functional Materials, 25, 4929–4947. https://doi.org/10.1002/adfm.201501250

    Article  Google Scholar 

  34. Lim, S. Y., Shen, W., & Gao, Z. (2015). Carbon quantum dots and their applications. Chemical Society Reviews, 44, 362–381. https://doi.org/10.1039/C4CS00269E

    Article  Google Scholar 

  35. Langer, M., Paloncyova, M., Medved, M., Pykal, M., Nachtigallova, D., Shi, B., et al. (2021). Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations. Applied Materials Today. https://doi.org/10.1016/j.apmt.2020.100924

    Article  Google Scholar 

  36. Tabatabaee, R. S., Golmohammadi, H., & Ahmadi, S. H. (2019). Easy diagnosis of jaundice: A smartphone-based nanosensor bioplatform using photoluminescent bacterial nanopaper for point-of-care diagnosis of hyperbilirubinemia. ACS Sens, 4, 1063–1071. https://doi.org/10.1021/acssensors.9b00275

    Article  Google Scholar 

  37. Ren, G., Tang, M., Chai, F., Wu, H. (2018). One-pot synthesis of highly fluorescent carbon dots from spinach and multipurpose applications. European Journal of Inorganic Chemistry, 153-158. https://doi.org/10.1002/EJIC.201701080

  38. Kailasa, S. K., Ha, S., Baek, S. H., Phan, L. M. T., Kim, S., Kwak, K., et al. (2019). Tuning of carbon dots emission color for sensing of Fe3+ ion and bioimaging applications. Materials Science and Engineering C, 98, 834–842. https://doi.org/10.1016/j.msec.2019.01.002

    Article  Google Scholar 

  39. Ding, Y. Y., Gong, X. J., Liu, Y., Lu, W. J., Gao, Y. F., **an, M., et al. (2018). Facile preparation of bright orange fluorescent carbon dots and the constructed biosensing platform for the detection of pH in living cells. Talanta, 189, 8–15. https://doi.org/10.1016/j.talanta.2018.06.060

    Article  Google Scholar 

  40. Manna, M., Roy, S., Bhandari, S., & Chattopadhyay, A. (2021). A ratiometric and visual sensing of phosphate by white light emitting quantum dot complex. Langmuir, 37, 5506–5512. https://doi.org/10.1021/acs.langmuir.1c00194

    Article  Google Scholar 

  41. Noun, F., Manioudakis, J., & Naccache, R. (2020). Toward uniform optical properties of carbon dots. Particle & Particle Systems Characterization, 37, 1–9. https://doi.org/10.1002/ppsc.202000119

    Article  Google Scholar 

  42. Mussabek, G., Zhylkybayeva, N., Lysenko, I., Lishchuk, P. O., Baktygerey, S., Yermukhamed, D., Taurbayev, Y., Sadykov, G., Zaderko, A. N., Skryshevsky, V. A., et al. (2022). Photo- and radiofrequency-induced heating of photoluminescent colloidal carbon dots. Nanomaterials, 12(14), 2426. https://doi.org/10.3390/nano12142426

    Article  Google Scholar 

  43. Ivanov, I. I., Zaderko, A. N., Lysenko, V., Clopeau, T., Lisnyak, V. V., & Skryshevsky, V. A. (2021). Photoluminescent recognition of strong alcoholic beverages with carbon nanoparticles. ACS Omega, 6(29), 18802–18810. https://doi.org/10.1021/acsomega.1c01953

    Article  Google Scholar 

  44. Li, S., Li, L., Tu, H., Zhang, H., Silvester, D. S., Banks, C. E., et al. (2021). The development of carbon dots: From the perspective of materials chemistry. Materials Today, 51, 188–207. https://doi.org/10.1016/j.mattod.2021.07.028

    Article  Google Scholar 

  45. Dubyk, K., Borisova, T., Paliienko, K., Krisanova, N., Isaiev, M., Alekseev, S., Skryshevsky, V., Lysenko, V., & Geloen, A. (2022). Bio-distribution of carbon nanoparticles studied by photoacoustic measurements. Nanoscale Research Letters, 17(1), 127. https://doi.org/10.1186/s11671-022-03768-3

    Article  Google Scholar 

  46. Kuznietsova, H., Dziubenko, N., Paliienko, K., Pozdnyakova, N., Krisanova, N., Pastukhov, A., Lysenko, T., Dudarenko, M., Skryshevsky, V., Lysenko, V., & Borisova, T. (2023). A comparative multi-level toxicity assessment of carbon-based Gd-free dots and Gd-doped nanohybrids from coffee waste: Hematology, biochemistry, histopathology and neurobiology study. Scientific reports, 13(1), 9306. https://doi.org/10.1038/s41598-023-36496-4

    Article  Google Scholar 

  47. Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380

    Article  Google Scholar 

  48. Geng, Z., Cao, Z., & Liu, J. (2023). Recent advances in targeted antibacterial therapy basing on nanomaterials. Exploration, 3(1), 20210117. https://doi.org/10.1002/EXP.20210117

    Article  Google Scholar 

  49. Yang, S. T., Wang, X., Wang, H., Lu, F., Luo, P. G., Cao, L., Meziani, M. J., Liu, J. H., Liu, Y., Chen, M., Huang, Y., & Sun, Y. P. (2009). Carbon dots as nontoxic and high-performance fluorescence imaging agents. The Journal of Physical Chemistry C, 113(42), 18110–18114. https://doi.org/10.1021/jp9085969

    Article  Google Scholar 

  50. Wang, Y., Anilkumar, P., Cao, L., Liu, J. H., Luo, P. G., Tackett, K. N., 2nd., Sahu, S., Wang, P., Wang, X., & Sun, Y. P. (2011). Carbon dots of different composition and surface functionalization: Cytotoxicity issues relevant to fluorescence cell imaging. Experimental Biology and Medicine (Maywood), 236(11), 1231–8. https://doi.org/10.1258/ebm.2011.011132

    Article  Google Scholar 

  51. Hou, L., Chen, D., Wang, R., Wang, R., Zhang, H., Zhang, Z., Nie, Z., & Lu, S. (2021). Transformable honeycomb-like nanoassemblies of carbon dots for regulated multisite delivery and enhanced antitumor chemoimmunotherapy. Angewandte Chemie International Edition, 60, 6581–6592. https://doi.org/10.1002/anie.202014397

    Article  Google Scholar 

  52. Masadeh, M. M., Alzoubi, K. H., Khabour, O. F., & Al-Azzam, S. I. (2014). Ciprofloxacin-induced antibacterial activity is attenuated by phosphodiesterase inhibitors. Current Therapeutic Research, Clinical and Experimental, 77, 14–17. https://doi.org/10.1016/j.curtheres.2014.11.001

    Article  Google Scholar 

  53. Miao, H., Wang, P., Cong, Y., Dong, W., & Li, L. (2023). Preparation of ciprofloxacin-based carbon dots with high antibacterial activity. IJMS, 24(7), 6814. https://doi.org/10.3390/ijms24076814

    Article  Google Scholar 

  54. Jian, H. J., Wu, R. S., Lin, T. Y., Li, Y. J., Lin, H. J., Harroun, S. G., Lai, J. Y., & Huang, C. C. (2017). Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano, 11, 6703–6716. https://doi.org/10.1021/acsnano.7b01023

    Article  Google Scholar 

  55. Ben-Zichri, S., Rajendran, S., Bhunia, S. K., & Jelinek, R. (2022). Resveratrol carbon dots disrupt mitochondrial function in cancer cells. Bioconjugate Chemistry, 33(9), 1663–1671. https://doi.org/10.1021/acs.bioconjchem

    Article  Google Scholar 

  56. Chong, Y., Ge, C., Fang, G., Tian, X., Ma, X., Wen, T., Wamer, W. G., Chen, C., Chai, Z., & Yin, J. J. (2016). Crossover between anti- and pro-oxidant activities of graphene quantum dots in the absence or presence of light. ACS Nano, 10(9), 8690–8699. https://doi.org/10.1021/acsnano.6b04061

    Article  Google Scholar 

  57. Li, P., Liu, S., Cao, W., Zhang, G., Yang, X., Gong, X., & **ng, X. (2020). Low-toxicity carbon quantum dots derived from gentamicin sulfate to combat antibiotic resistance and eradicate mature biofilms. Chemical Communications (Cambridge, England), 56(15), 2316–2319. https://doi.org/10.1039/c9cc09223d

    Article  Google Scholar 

  58. Wang, H., Song, Z., Gu, J., Li, S., Wu, Y., & Han, H. (2019). Nitrogen-doped carbon quantum dots for preventing biofilm formation and eradicating drug-resistant bacteria infection. ACS Biomaterials Science & Engineering, 5(9), 4739–4749. https://doi.org/10.1021/acsbiomaterials.9b00583

    Article  Google Scholar 

  59. Sviridova, E., Barras, A., Addad, A., Plotnikov, E., Di Martino, A., Deresmes, D., Nikiforova, K., Trusova, M., Szunerits, S., Guselnikova, O., Postnikov, P., & Boukherroub, R. (2022). Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity. Biomaterials Advances, 134, 112697. https://doi.org/10.1016/j.msec.2022.112697.hal-03687095

    Article  Google Scholar 

  60. Li, P., Han, F., Cao, W., Zhang, G., Li, J., Zhou, J., Gong, X., Turnbull, G., Shu, W., **a, L., Fang, B., **ng, X., & Li, B. (2020). Carbon quantum dots derived from lysine and arginine simultaneously scavenge bacteria and promote tissue repair. Applied Materials Today, 19, 100601. https://doi.org/10.1016/j.apmt.2020.100601

    Article  Google Scholar 

  61. Bing, W., Sun, H. J., Yan, Z., Ren, J., & Qu, X. (2016). Programmed bacteria death induced by carbon dots with different surface charge. Small (Weinheim an der Bergstrasse, Germany), 12, 4713–4718. https://doi.org/10.1002/smll.201600294

    Article  Google Scholar 

  62. Li, Y. J., Harroun, S. G., Su, Y. C., Huang, C. F., Unnikrishnan, B., Lin, H. J., et al. (2016). Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Advanced Healthcare Materials, 5, 2545–2554. https://doi.org/10.1002/adhm.201600297

    Article  Google Scholar 

  63. Zhao, D., Zhang, Z., Liu, X., Zhang, R., & **ao, X. (2021). Rapid and low-temperature synthesis of N, P co-doped yellow emitting carbon dots and their applications as antibacterial agent and detection probe to Sudan Red I. Materials Science and Engineering C, 119, 111468. https://doi.org/10.1016/j.msec.2020.111468

    Article  Google Scholar 

  64. Kaminari, A., Nikoli, E., Athanasopoulos, A., Sakellis, E., Sideratou, Z., & Tsiourvas, D. (2021). Engineering mitochondriotropic carbon dots for targeting cancer cells. Pharmaceuticals, 14(9), 932. https://doi.org/10.3390/ph14090932

    Article  Google Scholar 

  65. Milosavljevic, V., Nguyen, H. V., Michalek, P., et al. (2015). Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization. Chemical Papers, 69, 192–201. https://doi.org/10.2478/s11696-014-0590-2

    Article  Google Scholar 

  66. Hua, J., Hua, P., & Qin, K. (2024). Tunable fluorescent biomass-derived carbon dots for efficient antibacterial action and bioimaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 680, 132672. https://doi.org/10.1016/j.colsurfa.2023.132672

    Article  Google Scholar 

  67. Sima, M., Vrbova, K., Zavodna, T., Honkova, K., Chvojkova, I., Ambroz, A., Klema, J., Rossnerova, A., Polakova, K., Malina, T., Belza, J., Topinka, J., & Rossner, P., Jr. (2020). The differential effect of carbon dots on gene expression and DNA methylation of human embryonic lung fibroblasts as a function of surface charge and dose. International Journal of Molecular Sciences, 21(13), 4763. https://doi.org/10.3390/ijms21134763

    Article  Google Scholar 

  68. Yang, J., Gao, G., Zhang, X., Ma, Y. H., Chen, X., & Wu, F. G. (2019). One-step synthesis of carbon dots with bacterial contact-enhanced fluorescence emission: Fast Gram-type identification and selective Gram-positive bacterial inactivation. Carbon, 146, 827–839. https://doi.org/10.1016/j.carbon.2019.02.040

    Article  Google Scholar 

  69. Hui, L., Huang, J., Chen, G., Zhu, Y., & Yang, L. (2016). Antibacterial property of graphene quantum dots (both source material and bacterial shape matter). ACS Applied Materials & Interfaces, 8, 20–25. https://doi.org/10.1021/acsami.5b10132

    Article  Google Scholar 

  70. Cieplik, F., Deng, D. M., Crielaard, W., Buchalla, W., Hellwig, E., Al-Ahmad, A., et al. (2018). Antimicrobial photodynamic therapy - What we know and what we don’t. Critical Reviews in Microbiology, 44, 571–589. https://doi.org/10.1080/1040841X.2018.1467876

    Article  Google Scholar 

  71. Josefsen, L. B., & Boyle, R. W. (2008). Photodynamic therapy and the development of metal-based photosensitisers. Metal-Based Drugs, 2008, 276109. https://doi.org/10.1155/2008/276109

    Article  Google Scholar 

  72. Al Awak, M. M., Wang, P., Wang, S. Y., Tang, Y. A., Sun, Y. P., & Yang, L. J. (2017). Correlation of carbon dots’ light-activated antimicrobial activities and fluorescence quantum yield. RSC Advances, 7, 30177–30184. https://doi.org/10.1039/C7RA05397E

    Article  Google Scholar 

  73. Meziani, M. J., Dong, X. L., Zhu, L., Jones, L. P., LeCroy, G. E., Yang, F., et al. (2016). Visible-light-activated bactericidal functions of carbon “quantum” dots. ACS Applied Materials & Interfaces, 8, 10761–10766. https://doi.org/10.1021/acsami.6b01765

    Article  Google Scholar 

  74. Yu, M., Li, P., Huang, R., Xu, C., Zhang, S., Wang, Y., Gong, X., & **ng, X. (2023). Antibacterial and antibiofilm mechanisms of carbon dots: A review. Journal of Materials Chemistry, 11, 734–754. https://doi.org/10.1039/D2TB01977A

    Article  Google Scholar 

  75. Schwartz, S. H., Hendrix, B., Hoffer, P., Sanders, R. A., & Zheng, W. (2020). Carbon dots for efficient small interfering RNA delivery and gene silencing in plants. Plant Physiology, 184(2), 647–657. https://doi.org/10.1104/pp.20.00733

    Article  Google Scholar 

  76. **n, Q., Shah, H., Nawaz, A., **e, W., Akram, M. Z., Batool, A., Tian, L., Jan, S. U., Boddula, R., Guo, B., Liu, Q., & Gong, J. R. (2019). Antibacterial carbon-based nanomaterials. Advanced Materials, 31(45), e1804838. https://doi.org/10.1002/adma.201804838

    Article  Google Scholar 

  77. Walia, S., Shukla, A. K., Sharma, C., & Acharya, A. (2019). Engineered Bright blue- and red-emitting carbon dots facilitate synchronous imaging and inhibition of bacterial and cancer cell progression via 1O2-mediated DNA damage under photoirradiation. ACS Biomaterials Science & Engineering, 5(4), 1987–2000. https://doi.org/10.1021/acsbiomaterials.9b00149

    Article  Google Scholar 

  78. Yu, M., Guo, X., Lu, H., Li, P., Huang, R., Xu, C., Gong, X., **ao, Y., & **ng, X. (2022). Carbon dots derived from folic acid as an ultra-succinct smart antimicrobial nanosystem for selective killing of S. aureus and biofilm eradication. Carbon, 199, 395–406. https://doi.org/10.1016/j.carbon.2022.07.065

    Article  Google Scholar 

  79. Zhang, Y., Jia, Q., Nan, F., Wang, J., Liang, K., Li, J., Xue, X., Ren, H., Liu, W., Ge, J., & Wang, P. (2023). Carbon dots nanophotosensitizers with tunable reactive oxygen species generation for mitochondrion-targeted type I/II photodynamic therapy. Biomaterials, 293, 121953. https://doi.org/10.1016/j.biomaterials

    Article  Google Scholar 

  80. Sattarahmady, N., Rezaie-Yazdi, M., Tondro, G. H., & Akbari, N. (2017). Bactericidal laser ablation of carbon dots: An in vitro study on wild-type and antibiotic-resistant Staphylococcus aureus. Journal of Photochemistry and Photobiology B: Biology, 166, 323–332. https://doi.org/10.1016/j.jphotobiol.2016.12.006

    Article  Google Scholar 

  81. Lu, Y., Li, L., Li, M., Lin, Z., Wang, L., Zhang, Y., Yin, Q., **a, H., & Han, G. (2018). Zero-dimensional carbon dots enhance bone regeneration, osteosarcoma ablation, and clinical bacterial eradication. Bioconjugate Chemistry, 29, 2982–2993. https://doi.org/10.1021/acs.bioconjchem.8b00400

    Article  Google Scholar 

  82. An, X., Naowarojna, N., Liu, P., & Reinhard, B. M. (2020). Hybrid plasmonic photoreactors as visible light-mediated bactericides. ACS Applied Materials & Interfaces, 12(1), 106–116. https://doi.org/10.1021/acsami.9b14834

    Article  Google Scholar 

  83. An, X., Erramilli, S., & Reinhard, B. M. (2021). Plasmonic nano-antimicrobials: Properties, mechanisms and applications in microbe inactivation and sensing. Nanoscale, 13(6), 3374–3411. https://doi.org/10.1039/d0nr08353d

    Article  Google Scholar 

  84. Pandiyan, S., Arumugam, L., Srirengan, S. P., Pitchan, R., Sevugan, P., Kannan, K., Pitchan, G., Hegde, T. A., & Gandhirajan, V. (2020). Biocompatible carbon quantum dots derived from sugarcane industrial wastes for effective nonlinear optical behavior and antimicrobial activity applications. ACS Omega, 5(47), 30363–30372. https://doi.org/10.1021/acsomega.0c03290

    Article  Google Scholar 

  85. Li, H., Huang, J., Song, Y., Zhang, M., Wang, H., Lu, F., Huang, H., Liu, Y., Dai, X., Gu, Z., Yang, Z., Zhou, R., & Kang, Z. (2018). Degradable carbon dots with broad-spectrum antibacterial activity. ACS Applied Materials & Interfaces, 10(32), 26936–26946. https://doi.org/10.1021/acsami.8b08832

    Article  Google Scholar 

  86. Dong, X., Overton, C. M., Tang, Y., Darby, J. P., Sun, Y. P., & Yang, L. (2021). Visible light-activated carbon dots for inhibiting biofilm formation and inactivating biofilm-associated bacterial cells. Frontiers in Bioengineering and Biotechnology, 9, 786077. https://doi.org/10.3389/fbioe.2021.786077

    Article  Google Scholar 

  87. Lin, F., Li, C., & Chen, Z. (2018). Bacteria-derived carbon dots inhibit biofilm formation of Escherichia coli without affecting cell growth. Frontiers in Microbiology, 9, 259. https://doi.org/10.3389/fmicb.2018.00259

    Article  Google Scholar 

  88. Abraham, W., Demirci, S., Wypyski, M. S., Ayyala, R. S., Bhethanabotla, V. R., Lawson, L. B., & Sahiner, N. (2022). Biofilm inhibition and bacterial eradication by C-dots derived from polyethyleneimine-citric acid. Colloids and Surfaces B: Biointerfaces, 217, 112704. https://doi.org/10.1016/j.colsurfb.2022.112704

    Article  Google Scholar 

  89. Liu, M., Huang, L., Xu, X., Wei, X., Yang, X., Li, X., Wang, B., Xu, Y., Li, L., & Yang, Z. (2022). Copper doped carbon dots for addressing bacterial biofilm formation, wound infection, and tooth staining. ACS Nano, 16(6), 9479–9497. https://doi.org/10.1021/acsnano.2c02518

    Article  Google Scholar 

  90. Truskewycz, A., Yin, H., Halberg, N., Lai, D. T. H., Ball, A. S., Truong, V. K., Rybicka, A. M., & Cole, I. (2022). Carbon dot therapeutic platforms: Administration, distribution, metabolism, excretion, toxicity, and therapeutic potential. Small (Weinheim an der Bergstrasse, Germany), 18(16), e2106342. https://doi.org/10.1002/smll.202106342

    Article  Google Scholar 

  91. Martín, C., Jun, G., Schurhammer, R., Reina, G., Chen, P., Bianco, A., & Ménard-Moyon, C. (2019). Enzymatic degradation of graphene quantum dots by human peroxidases. Small (Weinheim an der Bergstrasse, Germany), 15(52), e1905405. https://doi.org/10.1002/smll.201905405

    Article  Google Scholar 

Download references

Funding

This research was funded by EU Horizon 2020 Research and Innovation Staff Exchange Programme (RISE) under Marie Skłodowska-Curie Action (project 101008159 “UNAT”), and Ministry of Education and Science of Ukraine (Grant #23BP07-02). A. Zaderko was also supported by French Government in frame of PAUSE programme.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, V.L. and V.S.; formal analysis, V.L., H.K., A.Z., N.D.; data curation, V.L., H.K., A.Z., I.B., T.L.; writing—original draft preparation, V.L., H.K.; writing—review and editing, V.L., H.K., N.D., A.Z., I.B., V.S.; visualization, V.L., H.K.; supervision, V.L.; project administration, V.L. and V.S.; funding acquisition, V.L. and V.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Halyna Kuznietsova.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Ethics Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, V., Kuznietsova, H., Dziubenko, N. et al. Application of Carbon Dots as Antibacterial Agents: A Mini Review. BioNanoSci. 14, 1819–1831 (2024). https://doi.org/10.1007/s12668-024-01415-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-024-01415-y

Keywords

Navigation