Log in

Maghemite Nanorods and Nanospheres: Synthesis and Comparative Physical and Biological Properties

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Hyperthermia treatment of different cancers based on magnetic nanoparticles has gained significant attention in recent years. In this work, biocompatible maghemite (γ-Fe2O3) nanorods were synthesized by dehydroxylation of lepidocrocite (γ-FeOOH) nanorods, using hydrolysis of ferrous salts in the presence of urea followed by calcination at 300 °C for 3 h. Maghemite nanospheres were also synthesized by oxidation of co-precipitated magnetite (Fe3O4) nanoparticles, followed by heat treatment at 250 °C for 3 h. The samples were analyzed by X-ray diffraction, vibrating sample magnetometry, and field emission scanning electron microscopy techniques. Cell viability of nanorods and nanospheres before and after applying a magnetic field was studied by MTT assay on G292 cell lines as a candidate of osteosarcoma 2D-cultured model. The heating capacity of the rod-like and spherical magnetic nanoparticles (MNP) was evaluated under a magnetic field using a solid state induction heating equipment. Moreover, the minimal inhibitory concentration (MIC) antibacterial activity of magnetic nanorods and nanospheres was investigated. The results showed that cell proliferation gradually increased in the presence of both maghemite nanorods and nanospheres compared to the control sample. However, cell viability decreased after applying hyperthermia treatment as indicative of cell apoptosis. Quantification of antibacterial properties also showed the MIC behavior of both nanoparticles at a concentration of 0.078 mg/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kundu, B., Ghosh, D., Sinha, M. K., Sen, P. S., Balla, V. K., Das, N., & Basu, D. (2013). Doxorubicin-intercalated nano-hydroxyapatite drug-delivery system for liver cancer: an animal model. Ceramics International, 39(8), 9557–9566.

    Article  Google Scholar 

  2. Ye, Y., & Geng, B. (2012). Magnetic nanotubes: synthesis, properties, and applications. Critical Reviews in Solid State and Materials Sciences, 37(2), 75–93.

    Article  Google Scholar 

  3. Yigit, M. V., Moore, A., & Medarova, Z. (2012). Magnetic nanoparticles for cancer diagnosis and therapy. Pharmaceutical Research, 29(5), 1180–1188.

    Article  Google Scholar 

  4. Stanciu, L., Won, Y. H., Ganesana, M., & Andreescu, S. (2009). Magnetic particle-based hybrid platforms for bioanalytical sensors. Sensors, 9(4), 2976–2999.

    Article  Google Scholar 

  5. Harifi, T., & Montazer, M. (2014). In situ synthesis of iron oxide nanoparticles on polyester fabric utilizing color, magnetic, antibacterial and sono-Fenton catalytic properties. Journal of Materials Chemistry B, 2(3), 272–282.

    Article  Google Scholar 

  6. Heidari, F., Bahrololoom, M. E., Vashaee, D., & Tayebi, L. (2015). In situ preparation of iron oxide nanoparticles in natural hydroxyapatite/chitosan matrix for bone tissue engineering application. Ceramics International, 41(2), 3094–3100.

    Article  Google Scholar 

  7. Trahms, L. (2015). Magnetic nanoparticles for biomedical applications. Biomedical Engineering/Biomedizinische Technik, 60(5), 389–391.

    Google Scholar 

  8. Bañobre-López, M., Teijeiro, A., & Rivas, J. (2013). Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports of Practical Oncology & Radiotherapy, 18(6), 397–400.

    Article  Google Scholar 

  9. World health organization 2015, Fact sheet N°297 Updated February.

  10. Abenojar, E.C., Wickramasinghe, S., Bas-Concepcion, J. and Samia, A.C.S., 2016. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Progress in Natural Science: Materials International.

  11. Martın, J. I., Nogues, J., Liu, K., Vicent, J. L., & Schuller, I. K. (2003). Ordered magnetic nanostructures: fabrication and properties. Journal of Magnetism and Magnetic Materials, 256(1), 449–501.

    Article  Google Scholar 

  12. Chang, J., Ma, Q., Ma, J. and Ma, H., 2016. Synthesis of Fe3O4 nanowire@ CeO 2/Ag nanocomposites with enhanced photocatalytic activity under sunlight exposure. Ceramics International.

  13. Woo, K., Lee, H. J., Ahn, J. P., & Park, Y. S. (2003). Sol–gel mediated synthesis of Fe2O3 nanorods. Advanced Materials, 15(20), 1761–1764.

    Article  Google Scholar 

  14. Zhong, L. S., Hu, J. S., Liang, H. P., Cao, A. M., Song, W. G., & Wan, L. J. (2006). Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Advanced Materials, 18(18), 2426–2431.

    Article  Google Scholar 

  15. Rashid, N. M., Li, X., Kishi, N., & Soga, T. (2014). Synthesis of iron oxide nanoflakes at lower temperature by air oxidation of iron foils. Japanese Journal of Applied Physics, 53(11S), 11RE04.

    Article  Google Scholar 

  16. Mohapatra, J., Mitra, A., Tyagi, H., Bahadur, D., & Aslam, M. (2015). Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. Nanoscale, 7(20), 9174–9184.

    Article  Google Scholar 

  17. Geng, Y. A. N., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., & Discher, D. E. (2007). Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnology, 2(4), 249–255.

    Article  Google Scholar 

  18. Rebolledo, A. F., Bomatí-Miguel, O., Marco, J. F., & Tartaj, P. (2008). A facile synthetic route for the preparation of superparamagnetic iron oxide nanorods and nanorices with tunable surface functionality. Advanced Materials, 20(9), 1760–1765.

    Article  Google Scholar 

  19. Gil, S., Correia, C. R., & Mano, J. F. (2015). Magnetically labeled cells with surface-modified Fe3O4 spherical and rod-shaped magnetic nanoparticles for tissue engineering applications. Advanced Healthcare Materials, 4(6), 883–891.

    Article  Google Scholar 

  20. Ericsson, H.M. and Sherris, J.C., 1971. Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathologica et Microbiologica Scandinavica, (Suppl. 217).

  21. Kim, W., Suh, C. Y., Cho, S. W., Roh, K. M., Kwon, H., Song, K., & Shon, I. J. (2012). A new method for the identification and quantification of magnetite–maghemite mixture using conventional X-ray diffraction technique. Talanta, 94, 348–352.

    Article  Google Scholar 

  22. Nasrazadani, S., & Raman, A. (1993). The application of infrared spectroscopy to the study of rust systems—II. Study of cation deficiency in magnetite (Fe 3 O 4) produced during its transformation to maghemite (γ-Fe 2 O 3) and hematite (α-Fe 2 O 3). Corrosion Science, 34(8), 1355–1365.

    Article  Google Scholar 

  23. Yousefi, T., Davarkhah, R., Golikand, A. N., Mashhadizadeh, M. H., & Abhari, A. (2013). Facile cathodicelectrosynthesis and characterization of iron oxide nano-particles. Progress in Natural Science: Materials International, 23(1), 51–54.

    Article  Google Scholar 

  24. Ercuta, A., & Chirita, M. (2013). Highly crystalline porous magnetite and vacancy-ordered maghemite microcrystals of rhombohedral habit. Journal of Crystal Growth, 380, 182–186.

    Article  Google Scholar 

  25. Chen, R., Zhao, S., Liu, H., Song, X., & Wei, Y. (2015). Preparation and photocatalytic activity of lepidocrocites obtained by photocatalytic oxidation of Fe (II) in the presence of citric acid. Journal of Photochemistry and Photobiology A: Chemistry, 312, 73–80.

    Article  Google Scholar 

  26. Cudennec, Y., & Lecerf, A. (2005). Topotactic transformations of goethite and lepidocrocite into hematite and maghemite. Solid State Sciences, 7(5), 520–529.

    Article  Google Scholar 

  27. Goss, C. J. (1988). Saturation magnetisation, coercivity and lattice parameter changes in the system Fe3O4-γFe2O3, and their relationship to structure. Physics and Chemistry of Minerals, 16(2), 164–171.

    Article  Google Scholar 

  28. Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: structure, properties, reactions, occurrences and uses. Hoboken: Wiley.

    Book  Google Scholar 

  29. Krahne, R., Manna, L., Morello, G., Figuerola, A., George, C., & Deka, S. (2013). Physical properties of nanorods (p. 217). Berlin: Springer.

    Book  Google Scholar 

  30. Baaziz, W., Pichon, B., Fleutot, S., Liu, Y., Lefevre, C., Greneche, J., Toumi, M., Mhiri, T., & Begin-Colin, S. (2014). Magnetic iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. Journal of Physical Chemistry C, 118(7), 3795–3810.

    Article  Google Scholar 

  31. Varadan, V. K., Chen, L., & **e, J. (2008). Nanomedicine: design and applications of magnetic nanomaterials, nanosensors and nanosystems. Hoboken: Wiley.

    Book  Google Scholar 

  32. Narlikar, A. V., & Fu, Y. Y. (2010). Oxford handbook of nanoscience and technology: volume 3: Applications (Vol. 3). Oxford: Oxford University Press.

    Google Scholar 

  33. Pearce, J., Giustini, A., Stigliano, R., & Hoopes, P. J. (2013). Magnetic heating of nanoparticles: the importance of particle clustering to achieve therapeutic temperatures. Journal of Nanotechnology in Engineering and Medicine, 4(1), 011005.

    Article  Google Scholar 

  34. Suto, M., Hirota, Y., Mamiya, H., Fujita, A., Kasuya, R., Tohji, K., & Jeyadevan, B. (2009). Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials, 321(10), 1493–1496.

    Article  Google Scholar 

  35. Chen, L., Mccrate, J., Lee, J., & Li, H. (2011). The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology, 22(10), 105708.

    Article  Google Scholar 

  36. Hou, C., Lin, F., Hou, S., & Liu, J. (2014). Hyperthermia induces apoptosis through endoplasmic reticulum and reactive oxygen species in human osteosarcoma cells. IJMS, 15(10), 17380–17395.

    Article  Google Scholar 

  37. Asín, L., Ibarra, M., Tres, A., & Goya, G. (2012). Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration. Pharmaceutical Research, 29(5), 1319–1327.

    Article  Google Scholar 

  38. He, Y., Ingudam, S., Reed, S., Gehring, A., Strobaugh, T., & Irwin, P. (2016). Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. Journal of Nanobiotechnology, 14(1).

  39. Ravishankar Rai, V. and Jamuna Bai, A., 2011. Nanoparticles and their potential application as antimicrobials. Science against microbial pathogens, communicating current research and technological advances. Formatex, Badajoz, pp. 197–209.

  40. Bhattacharyya, A., Chattopadhyay, R., Mitra, S., & Crowe, S. E. (2014). Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological Reviews, 94(2), 329–354.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.A. Seyyed Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, A., Seyyed Ebrahimi, S., Seyfoori, A. et al. Maghemite Nanorods and Nanospheres: Synthesis and Comparative Physical and Biological Properties. BioNanoSci. 8, 95–104 (2018). https://doi.org/10.1007/s12668-017-0431-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0431-1

Keywords

Navigation