Log in

Comparison of Microwave and Conventional Roasting in the Leaching of Rare Earth Elements, V, Ni, and Li from Polymetallic Black Shale

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Polymetallic black shale from the Buckton deposit in Alberta, Canada, is an undeveloped resource for V, rare earth elements (REEs), Ni, Li, and a few other metals. In this work, the valuable elements are extracted from the shale using a low-temperature sulfation roasting-water leaching method. Sulfation roasting enables the destruction of mineral phases releasing V ions as well as REEs, Li and Ni. We compare microwave and conventional roasting under varying temperature, sulfuric acid dosage, and time, followed by water leaching, to determine the optimum leaching efficiencies of metals. Microwave roasting consumes less energy than conventional roasting for similar release % of metals in laboratory-scale as well as scaled-up process (5 times larger) with a significant reduction in roasting temperature (by 40 °C) and time (by 30 min). A maximum leaching efficiency of 100% of gadolinium, 85% of ytterbium, 84% of Ce, 76% of Ni, 74% of V, 59% of Li, 34% of neodymium, 21% of yttrium, and 13% of La was achieved. We have identified the host minerals of several of the valuable elements using detailed mineralogical analyses which can be useful in formulating more efficient metal release strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10

Similar content being viewed by others

References

  1. Mudd G M, Resour Policy 35 (2), (2010) 98.

    Article  Google Scholar 

  2. Schieber J in Polymetallic black shales - Encyclopedia of Sediments and Sedimentary Rocks (ed) Middleton G V, Church M J, Coniglio M, Hardie L A, Longstaffe F J, Dordrecht: Springer Netherlands, (2003) pp. 83–85

  3. Vind J, and Tamm K, Miner Eng 17 (2021) 107271. https://doi.org/10.1016/j.mineng.2021.107271

    Article  CAS  Google Scholar 

  4. Norgate T, and Jahanshahi S, Miner Eng 23 (2), (2010) 65.

    Article  CAS  Google Scholar 

  5. Prior T, Giurco D, Mudd G, Mason L, and Behrisch J, Glob Environ Chang 22 (3), (2012) 577.

    Article  Google Scholar 

  6. Spooren J, et al., Resour Conserv Recycl 160 (2020) 104919. https://doi.org/10.1016/j.resconrec.2020.104919

    Article  Google Scholar 

  7. Liu Z X, **ang Y H, Yin Z L, Wu X W, Jiang J B, Chen Y G, and **ong L Z, Trans Nonferrous Met Soc China 26 (2), (2016) 565.

    Article  CAS  Google Scholar 

  8. Liu S, Xue W, and Wang L, Metals (Basel) 11 (8), (2021) 1301.

    Article  CAS  Google Scholar 

  9. Arslan C, and Arslan F, Hydrometallurgy 67 (1–3), (2002) 1.

    Article  CAS  Google Scholar 

  10. Li G, Cheng H, Chen S, Lu X, Xu Q, and Lu C, Metall. Mater. Trans. B 49 (3), (2018) 1136.

    Article  CAS  Google Scholar 

  11. Zou K, **ao J, Liang G, Huang W, and **ong W, Metals (Basel) 11 (9), (2021) 1. https://doi.org/10.3390/met11091342

    Article  CAS  Google Scholar 

  12. Shi Q, Zhang Y, Liu T, and Huang J, Jom 70 (10), (2018) 1972. https://doi.org/10.1007/s11837-017-2726-7

    Article  CAS  Google Scholar 

  13. Borra C R, Mermans J, Blanpain B, Pontikes Y, Binnemans K, and Van Gerven T, Miner. Eng. 92 (2016) 151. https://doi.org/10.1016/j.mineng.2016.03.002

    Article  CAS  Google Scholar 

  14. Wang M, and Wang X, Hydrometallurgy 102 (1–4), (2010) 50. https://doi.org/10.1016/j.hydromet.2010.02.001

    Article  CAS  Google Scholar 

  15. Yan Q, Li X, Wang Z, Wu X, Wang J, Guo H, Hu Q, and Peng W, Int J Miner Process 110–111 (2012) 1. https://doi.org/10.1016/j.minpro.2012.03.005

    Article  CAS  Google Scholar 

  16. Puritch B, Eccles E, Dufresne R, Nicholls M, Kuchling S, Watts K, Rodgers G, Cron K, Preliminary economic assessment for the Buckton Deposit, SBH Property, northeast Alberta. Tech. Rep., (2014)

  17. Watling H R, Minerals 5 (1), (2014) 1. https://doi.org/10.3390/min5010001

    Article  CAS  Google Scholar 

  18. Rizmanoski V, Miner Eng 24 (14), (2011) 1609. https://doi.org/10.1016/j.mineng.2011.08.017

    Article  CAS  Google Scholar 

  19. Al-Harahsheh M, and Kingman S W, Hydrometallurgy 73 (3–4), (2004) 189. https://doi.org/10.1016/j.hydromet.2003.10.006

    Article  CAS  Google Scholar 

  20. Tyagi V K, and Lo S L, Renew Sustain Energy Rev 18 (71), (2013) 288. https://doi.org/10.1016/j.rser.2012.10.032

    Article  CAS  Google Scholar 

  21. Yuan Y, Zhang Y, Liu T, Chen T, and Huang J, J Microw Power Electromagn Energy 50 (2), (2016) 81. https://doi.org/10.1080/08327823.2016.1190145

    Article  Google Scholar 

  22. Wang M, **an P, Wang X, and Li B, Jom 67 (2), (2015) 369. https://doi.org/10.1007/s11837-014-1215-5

    Article  CAS  Google Scholar 

  23. Zhong Yuan Y, Min Zhang Y, Liu T, and Jun Chen T, Int. J Miner Metall Mater 22 (5), (2015) 476. https://doi.org/10.1007/s12613-015-1096-9

    Article  CAS  Google Scholar 

  24. Zhao Y, Chen L, Yi H, Zhang Y, Song S, and Bao S, Minerals 8 (2), (2018) 1. https://doi.org/10.3390/min8020063

    Article  CAS  Google Scholar 

  25. Atlas of the western Canada sedimentary basin - Chapter 20, Alberta Energy Regulator.

  26. Eccles D M B, Nicholls D R, McMillan S K, NI-43–101: Technical Report, Updated and expanded mineral resource estimate for the Buckton Zone, SBH Property, northeast Alberta, (2013)

  27. Dufresne M B, Eccles D R, and Leckie D A, Alberta Geol Surv Spec Rep 9 (1988) 654.

    Google Scholar 

  28. Loukola-Ruskeeniemi K, and Lahtinen H, Ore Geol Rev 52 (2013) 85.

    Article  Google Scholar 

  29. Han T, Zhu X, Li K, Jiang L, Zhao C, and Wang Z, Ore Geol. Rev. 67 (2015) 158.

    Article  Google Scholar 

  30. Galindo C, Mougin L, Fakhi S, Nourreddine A, Lamghari A, and Hannache H, J Environ Radioact 92 (1), (2007) 41.

    Article  CAS  PubMed  Google Scholar 

  31. Kenzhaliyev B K, Surkova T Y, Azlan M N, Yulusov S B, Sukurov B M, and Yessimova D M, Hydrometallurgy (2021). https://doi.org/10.1016/j.hydromet.2021.105733

    Article  Google Scholar 

  32. Tuttle M L W, Breit G N, and Goldhaber M B, Appl Geochem 24 (8), (2009) 1565.

    Article  CAS  Google Scholar 

  33. Yuan S, He M, Wang R, ** Y, and Li Y, Powder Technol 405 (2022) 117532

    Article  CAS  Google Scholar 

  34. Lu Z, Hu R, Han T, Wen H, Mo B, and Algeo T J, Chem Geol 567 (2021) 120100

    Article  CAS  Google Scholar 

  35. Hu P, Zhang Y, Huang J, Liu T, Yuan Y, and Xue N, ACS Sustain. Chem. Eng. 6 (2), (2018) 1900. https://doi.org/10.1021/acssuschemeng.7b03311

    Article  CAS  Google Scholar 

  36. Zhang Y M, Bao S X, Liu T, Chen T J, and Huang J, Hydrometallurgy 109 (1–2), (2011) 116. https://doi.org/10.1016/j.hydromet.2011.06.002

    Article  CAS  Google Scholar 

  37. Zeng X, Wang F, Zhang H, Cui L, Yu J, and Xu G, Fuel 142 (2015) 180. https://doi.org/10.1016/j.fuel.2014.10.068

    Article  CAS  Google Scholar 

  38. Zheng Q, Zhang Y, Liu T, Huang J, Xue N, and Shi Q, Minerals (2017). https://doi.org/10.3390/min7030032

    Article  Google Scholar 

  39. Schwartz D, Gadiou R, Brilhac J F, Prado G, and Martinez G, Ind Eng Chem Res 39 (7), (2000) 2183. https://doi.org/10.1021/ie990801e

    Article  CAS  Google Scholar 

  40. **ao J, **ong W, Zou K, Chen T, Li H, and Wang Z, J Sustain Metall 7 (2), (2021) 642. https://doi.org/10.1007/s40831-021-00364-0

    Article  Google Scholar 

  41. Li R, Liu T, Zhang Y, Huang J, and Xu C, Minerals (2018). https://doi.org/10.3390/min8010025

    Article  Google Scholar 

  42. Yuan Y, Zhang Y, Liu T, Hu P, and Zheng Q, J Clean Prod 234 (2019) 494. https://doi.org/10.1016/j.jclepro.2019.06.271

    Article  CAS  Google Scholar 

  43. Liu C, Ju S H, Zhang L B, Srinivasakannan C, Peng J H, Le T Q, and Guo Z Y, Can Metall Q 56 (1), (2017) 1. https://doi.org/10.1080/00084433.2016.1242972

    Article  CAS  Google Scholar 

  44. Pickles C A, Miner Eng 22 (13), (2009) 1102. https://doi.org/10.1016/j.mineng.2009.02.015

    Article  CAS  Google Scholar 

  45. Myerson A, Handbook of industrial crystallization. Butterworth-Heinemann, (2002)

  46. Orzechowski K, Słonka T, and Głowinski J, J Phys Chem Solids 67 (5–6), (2006) 915.

    Article  CAS  Google Scholar 

  47. Zheng Y, Wang S, Feng J, Ouyang Z, and Li X, Geophys J Int 163 (3), (2005) 1195.

    Article  Google Scholar 

  48. Cumbane A, Microwave treatment of minerals and ores: dielectric properties of minerals—the effect of microwave radiation on the grindability and mineral liberation. University of Nottingham (2003)

  49. Harrison P C, A fundamental study of the heating effect of 2.45 GHz microwave radiation on minerals, University of Birmingham, Birmingham (1997).

    Google Scholar 

  50. Marzoughi O, and Pickles C A, Mater Chem Phys 313 (2024) 128814

    Article  CAS  Google Scholar 

  51. Thomas D, Abhilash P, and Sebastian M T, J Alloys Compd 546 (2013) 72.

    Article  CAS  Google Scholar 

  52. Nair K R, Rao P P, Amina B, Chandran M R, and Koshy P, Mater Lett 60 (15), (2006) 1796.

    Article  CAS  Google Scholar 

  53. Zheng Y L, Zhao X B, Zhao Q H, Li J C, and Zhang Q B, Geomech Geophys Geo-energ Geo-resour 6 (2020) 22.

    Article  Google Scholar 

  54. Velásquez G, Carrizo D, Salvi S, Vela I, Pablo M, and Pérez A, Minerals 10 (2), (2020) 109.

    Article  Google Scholar 

Download references

Acknowledgments

AKK and SP acknowledge the support from the Department of Chemical and Petroleum Engineering at University of Calgary and the Natural Sciences and Engineering Research Council (NSERC) grants (Discovery, CREATE-ME2, CFREF). IVC acknowledges the financial support of the Department of Geoscience and Petroleum, NTNU. The Research Council of Norway is acknowledged for the support to the Norwegian Laboratory for Mineral and Materials Characterization, MiMaC, project number 269842/F50.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irina V. Chernyshova or Sathish Ponnurangam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamalesh, A.K., Chernyshova, I.V., Slabov, V. et al. Comparison of Microwave and Conventional Roasting in the Leaching of Rare Earth Elements, V, Ni, and Li from Polymetallic Black Shale. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03373-1

Keywords

Navigation