Log in

Influence of Silicon Carbide (SiC) Reinforcement on Sliding and Erosive Wear Characteristics of Glass Fiber/Epoxy Hybrid Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) hybridization's effect on improvising the full potential of polymer composites has been presented. The tribological characteristics (sliding wear and erosive wear) of the SiC filler and SiC-filled glass fiber-reinforced hybrid composites were obtained. The influences of filler content, external load and sliding velocity on the sliding wear behavior of the prepared composites were measured. The solid particle erosive wear test was performed as per ASTM standard, and the influence of im**ement angles as well as filler content on the erosive wear of the composites was studied. From the study, it can be understood that 30% of each constituent, i.e., SiC filler and SiC/woven glass fiber, provide the optimum tribological (both sliding and erosive wear) properties. The microscopic analysis revealed that micro-crack propagation is the prevalent mode of deformation mechanisms observed during the sliding wear test of the samples. Furthermore, during erosion fragmentation of the matrix phase, the formation of micro-craters and grooves is perceived on the worn-out composite surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hassan A, Salema A A, Ani F N, and Bakar A A, Polym Compos 31 (2010), p. 2079. https://doi.org/10.1002/pc.21006

    Article  CAS  Google Scholar 

  2. Jariwala H, and Jain P, J Reinf Plast Compos 38 (2019), p. 441. https://doi.org/10.1177/0731684419828524

    Article  CAS  Google Scholar 

  3. Siakeng R, Jawaid M, Ariffin H, Sapuan S M, Asim M, and Sab N, Polym Compos 40 (2019), p. 446. https://doi.org/10.1002/pc.24747

    Article  CAS  Google Scholar 

  4. Madhu P, Sanjay M R, Senthamaraikannan P, Pradeep S, Saravanakumar S S, and Yogesha B, J. Nat. Fibers 16 (2019), p. 1132. https://doi.org/10.1080/15440478.2018.1453433

    Article  Google Scholar 

  5. Adekomaya O, Jamiru T, Sadiku R, and Huan Z, J Reinf Plast Compos 35 (2016), p. 3. https://doi.org/10.1177/0731684415611974

    Article  CAS  Google Scholar 

  6. Kumar S, and Singh K K, Proc Inst Mech Eng Part L J Mater Des Appl 234 (2020), p. 1439. https://doi.org/10.1177/1464420720941554

    Article  CAS  Google Scholar 

  7. Choudhary M, Singh T, Dwivedi M, and Patnaik A, Polym Compos 40 (2019), p. 4113. https://doi.org/10.1002/pc.25272

    Article  CAS  Google Scholar 

  8. Suresha B, Siddaramaiah K, Seetharamu S, and Kumaran P S, Wear 267 (2009), p. 1405. https://doi.org/10.1016/j.wear.2009.01.026

    Article  CAS  Google Scholar 

  9. Singh T, Puri M, Tejyan S, and Ravi R K, Polym Compos 42 (2021), p. 2817. https://doi.org/10.1002/pc.26016

    Article  CAS  Google Scholar 

  10. Karimzadeh A, Yahya M Y, Abdullah M N, and Wong K J, Fibers Polym 21 (2020), p. 1583. https://doi.org/10.1007/s12221-020-9640-2

    Article  CAS  Google Scholar 

  11. Abd El–Baky and M A, Kamel M, J Nat Fibers, 18 (2021), p. 213. https://doi.org/10.1080/15440478.2019.1616347

  12. Parikh H H, and Gohil P P, J Reinf Plast Compos 34 (2015), p. 1340. https://doi.org/10.1177/0731684415591199

    Article  CAS  Google Scholar 

  13. Chandramohan D, Murali B, Vasantha-Srinivasan P, and Dinesh Kumar S, J Bio- Tribo-Corrosion 5 (2019), p. 1. https://doi.org/10.1007/s40735-019-0259-z

    Article  Google Scholar 

  14. Talib A A A, Jumahat A, Jawaid M, Sapiai N, and Leao A L, Materials (Basel) 14 (2021), p. 1. https://doi.org/10.3390/ma14030701

    Article  CAS  Google Scholar 

  15. Vinu K S M, Suresha B, Rajamurugan G, and Megalingam A, Mater Res Express 6 (2019), p. 015307. https://doi.org/10.1088/2053-1591/aae5dc

    Article  CAS  Google Scholar 

  16. Nayak S K, and Satapathy A, Proc Inst Mech Eng Part J J Eng Tribol 234 (2020), p. 1846. https://doi.org/10.1177/1350650119896170

    Article  CAS  Google Scholar 

  17. Kukshal V, Sharma A, Kiragi V R, Patnaik A and Patnaik T K, In Automotive Tribology, (2019) p. 117. https://doi.org/10.1007/978-981-15-0434-1_7

  18. Kaundal R, Patnaik A, and Satapathy A, Proc Inst Mech Eng Part L J Mater Des Appl 232 (2018), p. 893. https://doi.org/10.1177/1464420716654307

    Article  CAS  Google Scholar 

  19. Pradhan S, Acharya S K, and Prakash V, J Appl Polym Sci 138 (2021), p. 50077. https://doi.org/10.1002/app.50077

    Article  CAS  Google Scholar 

  20. Pradhan S, and Acharya S K, Proc Inst Mech Eng Part J J Eng Tribol 235 (2021), p. 830. https://doi.org/10.1177/1350650120931645

    Article  CAS  Google Scholar 

  21. Vigneshwaran S, Uthayakumar M, and Arumugaprabu V, J Rein Plast and Compos 36 (2017), p. 1019. https://doi.org/10.1177/0731684417699711

    Article  CAS  Google Scholar 

  22. Raghavendra G, Ojha S, Acharya S K, and Pal S K, J Compos Mater 48 (2014), p. 2537. https://doi.org/10.1177/0021998313499955

    Article  CAS  Google Scholar 

  23. Prakash V, Pradhan S, and Acharya S K, Trans Indian Inst Met 74 (2021), p. 1741. https://doi.org/10.1007/s12666-021-02268-9

    Article  CAS  Google Scholar 

  24. Pradhan S, Prakash V, Majhi S, Mohapatra L, Mohanta N and Acharya S K, Trans Indian Inst Met (2022), p. 1. https://doi.org/10.1007/s12666-022-02617-2

  25. Pradhan S, Prakash V, and Acharya S K, Proc Inst Mech Eng Part L J Mat Des App 236 (2022), p. 334. https://doi.org/10.1177/14644207211044716

    Article  CAS  Google Scholar 

  26. Nayak S K, Satapathy A, and Mantry S, Poly Comp 41 (2020), p. 3687. https://doi.org/10.1002/pc.25667

    Article  CAS  Google Scholar 

  27. Ojha S, Acharya S K, and Gujjala R, Proc Mat Sc 6 (2014), p. 468. https://doi.org/10.1016/j.mspro.2014.07.060

    Article  CAS  Google Scholar 

  28. Dalbehera S, and Acharya S K, Adv Polym Tech 37 (2018), p. 240. https://doi.org/10.1002/adv.21662

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the authorities of the Department of Mechanical Engineering, VSSUT Burla, for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmi Narayan Rout.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, L.N., Mishra, D. & Swain, P.T.R. Influence of Silicon Carbide (SiC) Reinforcement on Sliding and Erosive Wear Characteristics of Glass Fiber/Epoxy Hybrid Composites. Trans Indian Inst Met 76, 1113–1121 (2023). https://doi.org/10.1007/s12666-022-02828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02828-7

Keywords

Navigation