Log in

An Investigation on Thermal Dry Sliding Wear Performance of Wrought AA 7075-T6

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The thermal frictional behavior of AA 7075-T6 against a WC-6Co ball for different temperatures was investigated to characterize the worn surface in terms of wear rate, coefficient of friction (COF) and hardness using a high temperature pin-on-disk tribometer. Microstructural composition was depicted after etching to show the precipitates. The hardness of the sample tested at room temperature (RT) was measured as HV 158.0, which dropped by ~ 56% in the 300 °C test. The wear rate and COF values increased over 10X in accordance with test temperature. The temperature increase loosened the structure, and the wear rate was negatively affected. A detailed tribological characterization was carried out using SEM and EDX, and wear track profiles were observed by cutting the samples with EDM and then comparing with the cross-sectional profile images (WCM). At RT and 100 °C, a partial abrasive wear mechanism was present; however, the temperature increase improved plastic deformation and adhesive wear. Oxide layer formation allowed oxidation cracks, and temperature increase proportionally improved wear rate. Possible phases were investigated using XRD to show the heat treatment effect of test temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aliyah A N and Anawati A, IOP Conf Ser: Mater Sci Eng 2019; 541: 012007.

  2. Yang Y, Zhang Z, Li X, Wang Q, and Zhang Y, Mater Des 2013; 51: 592.

    Article  CAS  Google Scholar 

  3. Mahathaninwong N, Plookphol T, Wannasin J, and Wisutmethangoon S, Mater Sci Eng A 2012; 532: 91.

    Article  CAS  Google Scholar 

  4. Huo W, Sun T, Hou L, Zhang W, Zhang Y, and Zhang J, Mater Charact 2020; 167: 110535.

  5. Singh A K, Singhal D, and Kumar R, Mater Today Proc 2019; 26: 2839.

    Article  Google Scholar 

  6. Starke E A and Staley J T, Prog Aerosp Sci 1996; 32: 131.

    Article  Google Scholar 

  7. Ahmad AH, Naher S, and Brabazon D, Key Eng Mater 2013; 554–557: 582.

    Article  Google Scholar 

  8. Lee S, Lee J, Song J, Park J, Choi S, Noh W, and Kim G, Procedia Manuf 2018; 15: 751.

    Article  Google Scholar 

  9. Kleiner M, Geiger M, and Klaus A, CIRP Ann: Manuf Technol 2003; 52: 521.

    Article  Google Scholar 

  10. Gaspar M, Dobosy A, Tisza M, Torok I, Dong Y, and Zheng K, Weld World 2020; 64; 2119.

    Article  CAS  Google Scholar 

  11. Praveen G, Suryakumari T S A, and Prasath S, Mater Today Proc (2020) (in press). DOI: https://doi.org/10.1016/j.matpr.2020.10.197.

  12. Yu Z, Zhao Y, and Lin Z, Chin J Nonferrous Met 2004; 14.

  13. Wang H, Luo YB, Friedman P, Chen MH, and Gao L, Trans. Nonferrous Met Soc China 2012; 22: 1.

    Article  Google Scholar 

  14. Zhang P, Zeng L, Mi X, Lu Y, Luo S, and Zhai W, Wear 2021; 474–475: 203760.

  15. Mo J L, Zhu M H, Zheng J F, Luo J, and Zhou Z R, Tribol Int 2010; 43: 912.

    Article  CAS  Google Scholar 

  16. Mao L, Cai M, Liu Q, and He Y, Tribol Int 2019; 145: 106194.

  17. Kumar P S S R and Madindwa M P, Trans Indian Inst Met 2021; 74: 79

  18. Rakshath S, Suresha B, Kumar R S, and Saravanan I, Mater Today Proc 2020; 22: 619.

    Article  CAS  Google Scholar 

  19. Bai Y, Guo Y, Li J, Yang Z, and Tian J, Proc Inst Mech Eng Part J J Eng Tribol 2017; 231: 900.

    Article  CAS  Google Scholar 

  20. Ozer G and Karaaslan A, Trans Nonferrous Met Soc China 2017; 27: 2357.

    Article  CAS  Google Scholar 

  21. Isadare A D, Aremo B, Adeoye M O, Olawale O J, and Shittu M D, Mater Res 2013; 16: 190.

    Article  CAS  Google Scholar 

  22. Fan X, Jiang D, Meng Q, Zhang B, and Wang T, Trans Nonferrous Met Soc China 2006; 16: 577.

    Article  CAS  Google Scholar 

  23. Guler K A, Kisasoz A, Ozer G, and Karaaslan A, Trans Nonferrous Met Soc China 2019; 29: 2237.

    Article  CAS  Google Scholar 

  24. Liu P, Hu J, Li H, Sun S, and Zhang Y, J Manuf Process 2020; 60: 578.

    Article  Google Scholar 

  25. Kumar M and Ross N G, J Mater Process Technol 2016; 231: 189.

    Article  CAS  Google Scholar 

  26. ASTM G99–05, Standard test method for wear testing with a pin-on-disk apparatus.

  27. Liu L L, Pan Q L, Wang X D, and **ong S W, J Alloys Compd 2018; 735: 261.

    Article  CAS  Google Scholar 

  28. Kilic S, Kacar I, Sahin M, Ozturk F, and Erdem O, Mater Res 2019; 22.

Download references

Funding

The authors acknowledge the support of Trakya University Scientific Research Projects Coordination Unit under project number of TUBAP 2019/248 and Kirklareli University Mechanical Engineering Department Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sencer Sureyya Karabeyoglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceviz, M., Misirli, C. & Karabeyoglu, S.S. An Investigation on Thermal Dry Sliding Wear Performance of Wrought AA 7075-T6. Trans Indian Inst Met 75, 2443–2451 (2022). https://doi.org/10.1007/s12666-022-02575-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02575-9

Keywords

Navigation