Log in

RETRACTED ARTICLE: Creep Deformation of Zr55Co25Al15Ni5 Bulk Metallic Glass Near Glass Transition Temperature: A Nanoindentation Study

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

This article was retracted on 27 March 2024

This article has been updated

Abstract

Using the nanoindentation technique, the creep deformation behavior of Zr55Co25Al15Ni5 bulk metallic glass (BMG) in the range of 0.94–1.03 glass transition temperature (Tg) and different loading rates was studied. The Maxwell–Voigt model was applied to describe the deformation and relaxation kinetics of BMGs near the glass transition. According to the results, the serrated behavior of deformation, as the indicator of shear events, disappeared at higher loading rates and temperatures. This event was due to the high rate of defect formation and propagation at higher temperatures under the indenting process. Based on the Maxwell model, it was found that the creep deformation can be divided into two distinct characteristic relaxation times in the range of 0.1–0.68 S and 8.3–24.8 S, respectively. At the higher temperatures, the creep deformation tends to have higher relaxation times, which corresponds to the viscoplastic behavior of material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Hayashi Y, Yamazaki H, Masunishi K, Ikehashi T, Nakamura N, and Kojima A, Int J Hydrogen Energy 45 (2020) 1187–1194. https://doi.org/10.1016/j.ijhydene.2019.10.245.

    Article  CAS  Google Scholar 

  2. Presz W, and Kulik T, Arch Civ Mech Eng 19 (2019) 100.

    Article  Google Scholar 

  3. Van Toan N, Tuoi T T K, Tsai Y -C, Lin Y -C, and Ono T, Sci Rep 10 (2020) 10108. https://doi.org/10.1038/s41598-020-67150-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fan S et al., Exp Mech 59 (2019) 361. https://doi.org/10.1007/s11340-018-00464-1.

    Article  Google Scholar 

  5. Dancholvichit N, Kapoor S G, and Salapaka S M, J Manuf Process (2020). https://doi.org/10.1016/j.jmapro.2020.04.024.

    Article  Google Scholar 

  6. Yamazaki H, Hayashi Y, Masunishi K, Ono D, and Ikehashi T, Electron Commun Japan 102 (2019) 70. https://doi.org/10.1002/ecj.12139.

    Article  Google Scholar 

  7. Tjahjono T et al., Trans Indian Inst Met (2021). https://doi.org/10.1007/s12666-021-02395-3.

    Article  Google Scholar 

  8. Huang Z, Liang X, Chang C, and Ma J, Biomed Microdevices 21 (2019) 13. https://doi.org/10.1007/s10544-019-0366-0.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X et al., Polym Eng Sci 59 (2019) 2202. https://doi.org/10.1002/pen.25223.

    Article  CAS  Google Scholar 

  10. He P et al., Microsyst Technol 22 (2016) 617. https://doi.org/10.1007/s00542-014-2395-1.

    Article  CAS  Google Scholar 

  11. Supriyono et al., Trans Indian Inst Met 74 (2021) 1721. https://doi.org/10.1007/s12666-021-02267-w.

    Article  CAS  Google Scholar 

  12. Lee K S, Kim S, Lim K R, Hong S H, Kim k B, and Na Y S, J Alloys Compd 663 (2016) 270. https://doi.org/10.1016/j.jallcom.2015.12.114.

    Article  CAS  Google Scholar 

  13. Yao Z F, Qiao J C, Pelletier J M, and Yao Y, J Mater Sci 51 (2016) 4079. https://doi.org/10.1007/s10853-016-9729-6.

    Article  CAS  Google Scholar 

  14. Bhowmick R, Raghavan R, Chattopadhyay K, and Ramamurty U, Acta Mater 54 (2006) 4221. https://doi.org/10.1016/j.actamat.2006.05.011.

    Article  CAS  Google Scholar 

  15. Li C et al., J Non Cryst Solids 492 (2018) 140. https://doi.org/10.1016/j.jnoncrysol.2018.04.026.

    Article  CAS  Google Scholar 

  16. Wang G, Pan D, Shi X, Huttula M, Cao W, and Huang Y, Metals (Basel). 8 (2018) 457.

    Article  Google Scholar 

  17. Hu F, Yuan C, Luo Q, Yang W, and Shen B, J Alloys Compd 807 (2019). https://doi.org/10.1016/j.jallcom.2019.151675.

    Article  CAS  Google Scholar 

  18. Song S M et al., J Mater Res Technol 8 (2019) 1907. https://doi.org/10.1016/j.jmrt.2019.01.007.

    Article  CAS  Google Scholar 

  19. Chen Y, and Qiao J, Materials (Basel). 13 (2020) 833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiao J C, Pelletier J M, and Yao Y, Mater Sci Eng A 743 (2019) 185. https://doi.org/10.1016/j.msea.2018.11.066.

    Article  CAS  Google Scholar 

  21. Schroers J, Pham Q, and Desai A, J Microelectromech Syst 16 (2007) 240. https://doi.org/10.1109/JMEMS.0007.892889.

    Article  CAS  Google Scholar 

  22. Schroers J, Nguyen T, O’Keeffe S, and Desai A, Mater Sci Eng A 449–451 (2007) 898. https://doi.org/10.1016/j.msea.2006.02.398.

    Article  CAS  Google Scholar 

  23. Li R et al., Commun Phys 1 (2018) 75. https://doi.org/10.1038/s42005-018-0076-6.

    Article  CAS  Google Scholar 

  24. Magagnosc D J, Chen W, Kumar G, Schroers J, and Gianola D S, Sci Rep 6 (2016) 19530. https://doi.org/10.1038/srep19530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yuan C C et al., J Alloys Compd 853 (2021) 157233. https://doi.org/10.1016/j.jallcom.2020.157233.

    Article  CAS  Google Scholar 

  26. Hu H E, Lu Z, Su X H, and Deng J X, J Mater Eng Perform 30 (2021) 2940. https://doi.org/10.1007/s11665-021-05511-y.

    Article  CAS  Google Scholar 

  27. Samavatian M, Gholamipour R, and Samavatian V, Comput Mater Sci 186 (2021) 110025. https://doi.org/10.1016/j.commatsci.2020.110025.

    Article  CAS  Google Scholar 

  28. Deng R, Long Z, Peng L, Kuang D, and Ren B, J Non Cryst Solids 533 (2020) 119829. https://doi.org/10.1016/j.jnoncrysol.2019.119829.

    Article  CAS  Google Scholar 

  29. Song S X, Bei H, Wadsworth J, and Nieh T G, Intermetallics 16 (2008) 813. https://doi.org/10.1016/j.intermet.2008.03.007.

    Article  CAS  Google Scholar 

  30. Jana P P, Gunti A, and Das J, Mater Sci Eng A 762 (2019) 138102. https://doi.org/10.1016/j.msea.2019.138102.

    Article  CAS  Google Scholar 

  31. Gunti A, Jana P P, Lee M -H, and Das J, Nanomaterials 11 (2021) 7. https://doi.org/10.3390/nano11071670.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wei B C, Zhang L C, Zhang T H, **ng D M, Das J, and Eckert J, J Mater Res 22 (2007) 258. https://doi.org/10.1557/jmr.2007.0039.

    Article  CAS  Google Scholar 

  33. Schuh C A, Nieh T G, and Kawamura Y, J Mater Res 17 (2002) 16. https://doi.org/10.1557/JMR.2002.0243.

    Article  Google Scholar 

  34. Nieh T G, Schuh C, Wadsworth J, and Li Y, Intermetallics 10 (2002) 1177. https://doi.org/10.1016/S0966-9795(02)00146-2.

    Article  CAS  Google Scholar 

  35. Qiao J W, Zhang Y, and Liaw P K, Intermetallics 18 (2010) 2057. https://doi.org/10.1016/j.intermet.2010.06.013.

    Article  CAS  Google Scholar 

  36. Khanouki M T A, Tavakoli R, and Aashuri H, J Non Cryst Solids 553 (2021) 120497. https://doi.org/10.1016/j.jnoncrysol.2020.120497.

    Article  CAS  Google Scholar 

  37. Harmon J S, Demetriou M D, Johnson W L, and Samwer K, Phys Rev Lett 99 (2007) 135502.

    Article  PubMed  Google Scholar 

  38. Gong P et al., Mater Sci Eng A 688 (2017) 174. https://doi.org/10.1016/j.msea.2017.01.094.

    Article  CAS  Google Scholar 

  39. Samavatian M, Gholamipour R, Amadeh A A, and Mirdamadi S, Mater Sci Eng A 753 (2019) 218. https://doi.org/10.1016/j.msea.2019.03.058.

    Article  CAS  Google Scholar 

  40. Kalcher C, Brink T, Rohrer J, Stukowski A, and Albe K, Phys Rev Mater 3 (2019) 93605. https://doi.org/10.1103/PhysRevMaterials.3.093605.

    Article  CAS  Google Scholar 

  41. Zhu F et al., Phys Rev Lett 119 (2017) 215501.

    Article  PubMed  Google Scholar 

  42. Samavatian M, Gholamipour R, Amadeh A A, and Samavatian V, Phys B Condens Matter 595 (2020) 412390. https://doi.org/10.1016/j.physb.2020.412390.

    Article  CAS  Google Scholar 

  43. Zhu F et al., Nat Commun 7 (2016) 11516. https://doi.org/10.1038/ncomms11516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Castellero A, Moser B, Uhlenhaut D I, Torre F H D, and Löffler J F, Acta Mater 56 (2008) 3777. https://doi.org/10.1016/j.actamat.2008.04.021.

    Article  CAS  Google Scholar 

  45. Ye J C, Lu J, Liu C T, Wang Q, and Yang Y, Nat Mater 9 (2010) 619. https://doi.org/10.1038/nmat2802.

    Article  CAS  PubMed  Google Scholar 

  46. Pan D et al., Appl Phys Lett 95 (2009) 141909. https://doi.org/10.1063/1.3246151.

    Article  CAS  Google Scholar 

  47. Wang Y, Zhang J, Wu K, Liu G, Kiener D, and Sun J, Mater Res Lett 6 (2018) 22. https://doi.org/10.1080/21663831.2017.1383946.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marischa Elveny or Yu Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s12666-024-03314-y"

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anggono, A.D., Elveny, M., Abdelbasset, W.K. et al. RETRACTED ARTICLE: Creep Deformation of Zr55Co25Al15Ni5 Bulk Metallic Glass Near Glass Transition Temperature: A Nanoindentation Study. Trans Indian Inst Met 75, 673–680 (2022). https://doi.org/10.1007/s12666-021-02455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02455-8

Keywords

Navigation