Log in

Effect of Zn or Zn + Cu Addition on the Precipitation in Al–Mg–Si Alloys: A Review

  • Review Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The effect of Zn or Zn + Cu addition on the precipitation in Al–Mg–Si alloys is summarized and analyzed by analyzing DSC curves, aging strengthening curves, and precipitates, which is very helpful for Al–Mg–Si alloys industrial application. With Zn addition, the hardness of Al–Mg–Si alloys increased, and the peak aging time might shorten or increase, which might be related to the Mg/Si atomic ratio. With Zn + Cu addition, the effects on the age-hardening curves of Al–Mg–Si alloys depended on the Zn + Cu content and aging system. With Zn addition, the precipitation of Al–Mg–Si alloy changed, such as the appearance of η′ and the composition and structure of β″ and β′. With Zn + Cu addition, the precipitation of Al–Mg–Si alloys changed, such as the composition of Mg–Si phases and the activation energy of β″. Moreover, items that require attention in future investigations were pointed out, including activation energy, location of Zn and Cu atoms in precipitation, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guo H, Yue X, Hot Working Technol, 45 (2016) 139. (in Chinese)

    Google Scholar 

  2. Mao G, Yan H, Zhu C, Wu Z, and Gao W, J Alloys Compd 806 (2019) 909.

    Article  CAS  Google Scholar 

  3. Zhang X M, Zhou Z L, Tang J G, Bin K, Hu J L, J Mater Eng 12 (2013) 49.

    Google Scholar 

  4. Matsuda K, Sakaguchi Y, Miyata Y, Uetani Y, Sato T, Kamio A, and Ikeno S, J Mater Sci 35 (2000) 179.

    Article  CAS  Google Scholar 

  5. Fang X, Song M, Li K, and Du Y, J Min Metall B 46 (2010) 171.

    Article  CAS  Google Scholar 

  6. Edwards G A, Stiller K, Dunlop G L, Acta Mater 46 (1998) 3893.

    Article  CAS  Google Scholar 

  7. Marioara C D, Andersen S J, Jansen J, and Zandbergen H W, Acta Mater 49 (2001) 321.

    Article  CAS  Google Scholar 

  8. Miao W F, Laughlin D E. Scr Mater 40 (1999) 873.

    Article  CAS  Google Scholar 

  9. Matsuda K, Ikeno S, Terayama K, Matsui H, Sato T, and Uetani Y, Metall Mater Trans A Phys Metall Mater Sci 36 (2005) 2007.

    Article  Google Scholar 

  10. Matsuda K, Gamada H, Fujii K, Uetani Y, Sato T, and Kamio A, Metall Mater Trans A Phys Metall Mater Sci 29 (1998) 1161.

    Article  Google Scholar 

  11. Lynch J P, Brown L M, and Jacobs M H, Acta Mater 30 (1982) 1389.

    Article  CAS  Google Scholar 

  12. Maruyama N, Uemori R, Hashimoto N, Saga M, and Kikuchi M, Scr Mater 36 (1997) 89.

    Article  CAS  Google Scholar 

  13. Andersen S J, Zandbergen H W, Jansen J, TrÆholt C, Tundal U, Reiso O, Acta Mater 46 (1998) 3283.

    Article  CAS  Google Scholar 

  14. Hasting H S, Froseth A Q, Andersen S J, Vissers R, Walmsley J C, Marioara C D, Danoix F, Lefebvre W, Holmestad R. J Appl Phys 106 (2009) 691.

    Article  Google Scholar 

  15. Zhao D, Zhou L, Kong Y, Wang A, Wang J, Peng Y, Du Y, Ouyang Y, and Zhang W. J Mater Sci 46 (2011) 7839.

    Article  CAS  Google Scholar 

  16. Ramachandran S, Jung K, Narayan J, and Conrad H, Mater Sci Eng A 435 (2006) 693.

    Article  Google Scholar 

  17. Ehlers F J H, Comput Mater Sci 81 (2014) 617.

  18. Ninive P H, LVvik O M, and Strandlie A, Metall Mater Trans A Phys Metall Mater Sci 45 (2014) 2916.

    Article  CAS  Google Scholar 

  19. Ninive P H, Strandlie A, Gulbrandsen-Dahl S, Lefebvre W, Marioara C D, Andersen S J, Friis J, Holmestad R, and Løvvik O M, Acta Mater 69 (2014) 126.

    Article  CAS  Google Scholar 

  20. Wenner S, and Holmestad R, Scr Mater 118 (2016) 5.

    Article  CAS  Google Scholar 

  21. Cayron C, and Buffat P A, Acta Mater 48 (2000) 2639.

    Article  CAS  Google Scholar 

  22. Andersen S J, Zandbergen H W, Jansen J, Tráhol C, Tundal U, and Reiso O, Acta Mater 46 (2007) 3283.

    Article  Google Scholar 

  23. Matsuda K, Tada S, Ikeno S, Sato T, and Kamio A, Scr Mater 32 (1995) 1175.

    Article  CAS  Google Scholar 

  24. Frøseth A G, Høier R, Derlet P M, Andersen S J, Marioara C D, Phys Rev B 67 (2003) 224106.

  25. Andersen S J, Marioara C D, Vissers R, Frøseth A, and Zandbergen H W, Mater Sci Eng A 444 (2007) 157.

    Article  Google Scholar 

  26. Chen H, Lu J, Kong Y, Li K, Yang T, Meingast A, Yang M, Lu Q, and Du Y, Acta Mater 185 (2020) 193.

    Article  CAS  Google Scholar 

  27. Li Y, Gao G, Wang Z, Di H, Li J, Xu G. Materials 11 (2018) 2591.

    Google Scholar 

  28. Chi S, Deng Y, Xu X, and Guo X, Materials 13 (2020) 650.

    Article  CAS  Google Scholar 

  29. Jiao N N, Lai Y X, Chen S L, Gao P, and Chen J H, J Mater Sci Technol 70 (2021) 105.

    Article  Google Scholar 

  30. Saito T, Wenner S, Osmundsen E, Marioara C D, Andersen S J, Røyset J, Lefebvre W, and Holmestad R, Philos Mag 94 (2014) 2410.

    Article  CAS  Google Scholar 

  31. Saito T, Ehlers F J H, Lefebvre W, Hernandez-Maldonado D, Bjørge R, Marioara C D, Andersen S J, and Holmestad R, Acta Mater 78 (2014) 245.

    Article  CAS  Google Scholar 

  32. Ding X P, Cui H, Zhang J X, Li H X, Guo M X, Lin Z, Zhuang L Z, and Zhang J S, Mater Des 65 (2015) 1229.

    Article  CAS  Google Scholar 

  33. Yang W, Liu L, Zhang J, and Ji S, Mater Sci Eng A 682 (2017) 85.

    Article  CAS  Google Scholar 

  34. Li L, Ji S, Zhu Q, Wang Y, Dong X, Yang W, Midson S, and Kang Y, Metall Mater Trans A Phys Metall Mater Sci 49 (2018) 3247.

    Article  CAS  Google Scholar 

  35. Trudonoshyn O, Rehm S, Randelzhofer P, and Körner С, Mater Charact 158 (2019) 109959.

    Article  CAS  Google Scholar 

  36. Yang W, Shen W, Zhang R, Cao K, Zhang J, and Liu L, Mater Charact 169 (2020) 110579.

    Article  CAS  Google Scholar 

  37. Trudonoshyn O, Randelzhofer P, and Körner C. J Alloys Compd 872 (2021) 159692.

    Article  CAS  Google Scholar 

  38. Kim J H, Daniel Marioara C, Holmestad R, Kobayashi E, and Sato T, Mater Sci Eng A 560 (2013) 154.

    Article  CAS  Google Scholar 

  39. Hirosawa S, Nakamura F, and Sato T, Mater Sci Forum 561–565 (2007) 283.

    Article  Google Scholar 

  40. Xu C, **ao W, Zheng R, Hanada S, Yamagata H, and Ma C, Mater Des 88 (2015) 485.

    Article  CAS  Google Scholar 

  41. Strihavkova E, Weiss V, and Michna S, Metallurgist 56 (2013) 708.

    Article  CAS  Google Scholar 

  42. Mao F, Yan G, Xuan Z, Cao Z, and Wang T, J Alloys Compd 650 (2015) 896.

    Article  CAS  Google Scholar 

  43. Kim J M, Seong K D, Jun J H, Kim K T, Jung W J. J Korea Foundry Soc 24 (2004) 138 (in Korean)

    Google Scholar 

  44. Ding L, Jia Z, Liu Y, Weng Y, and Liu Q, J Alloys Compd 688 (2016) 362.

    Article  CAS  Google Scholar 

  45. **ao Q, Liu H, Yi D, Yin D, Chen Y, Zhang Y, and Wang B, J Alloys Compd 695 (2017) 1005.

    Article  CAS  Google Scholar 

  46. Cayron C, Buffat P A, Mater Sci Forum 331–337 (2000) 1001.

  47. Bo Y, Mingxing G, Wu Y, Zhang J, Zhuang L, and Lavernia E J, J Alloys Compd 797 (2019) 26.

    Article  Google Scholar 

  48. Guo M X, Zhang X K, Zhang J S, and Zhuang L Z, J Mater Sci 52 (2017) 1390.

    Article  CAS  Google Scholar 

  49. Guo M X, Zhang Y, Zhang X K, Zhang J S, and Zhuang L Z, Mater Sci Eng A 669 (2016) 20.

    Article  CAS  Google Scholar 

  50. Zhu S, Li Z, Yan L, Li X, Huang S, Yan H, Zhang Y, and **ong B, Mater Sci Technol (United Kingdom) 35 (2019) 1291.

    Article  CAS  Google Scholar 

  51. Zhang M, Wang J, Han J, Sui H, Huang H, ** K, and Qian F, Calphad Comput Coupling Phase Diagrams Thermochem 67 (2019) 101684.

    Article  CAS  Google Scholar 

  52. Zhu S, Li Z, Yan L, Li X, Huang S, Yan H, Zhang Y, and **ong B, Mater Charact 145 (2018) 258.

    Article  CAS  Google Scholar 

  53. Yan L, Zhang Y, Li X, Li Z, Wang F, Liu H, and **ong B, Prog. Nat. Sci. Mater. Int. 24 (2014) 97.

    Article  Google Scholar 

  54. Biswas A, Siegel D J, and Seidman D N, Acta Mater 75 (2014) 322.

    Article  CAS  Google Scholar 

  55. Guo M X, Sha G, Cao L Y, Liu W Q, Zhang J S, and Zhuang L Z, Mater Chem Phys 162 (2015) 15.

    Article  CAS  Google Scholar 

  56. Yan L, Li Z, An Zhang Y, **ong B, Li X, Liu H, Huang S, and Yan H, Prog Nat Sci Mater Int 26 (2016) 398.

    Article  CAS  Google Scholar 

  57. Zhu S, Li Z H, Yan L Z, Li X W, Huang S H, Yan H W, Zhang Y A, **ong B Q, Mater Sci Forum 941 (2018) 961.

  58. Lutz A, Malet L, Dille J, de Almeida L H, Lapeire L, Verbeken K, Godet S, Terryn H, and De Graeve I, J Alloys Compd 794 (2019) 435.

    Article  CAS  Google Scholar 

  59. Guo M X, Du J Q, Zheng C H, Zhang J S, and Zhuang L Z, J Alloys Compd 778 (2019) 256.

    Article  CAS  Google Scholar 

  60. Zhu S, Li Z, Yan L, Li X, Huang S, Yan H, Zhang Y, and **ong B, J Alloys Compd 773 (2019) 496.

    Article  CAS  Google Scholar 

  61. Guo M X, Li G J, Zhang Y D, Sha G, Zhang J S, Zhuang L Z, and Lavernia E J, Scr Mater 159 (2019) 5.

    Article  CAS  Google Scholar 

  62. Guo M X, Zhang Y D, Li G J, ** S B, Sha G, Zhang J S, Zhuang L Z, and Lavernia E J, J Alloys Compd 774 (2019) 347.

    Article  CAS  Google Scholar 

  63. Weng Y, Ding L, Zhang Z, Jia Z, Wen B, Liu Y, Muraishi S, Li Y, and Liu Q, Acta Mater 180 (2019) 301.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Equipment Pre-research Project of China (No. 41422060204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanguang Liu or Wenli Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, G., Liu, S., Gao, W. et al. Effect of Zn or Zn + Cu Addition on the Precipitation in Al–Mg–Si Alloys: A Review. Trans Indian Inst Met 74, 2925–2938 (2021). https://doi.org/10.1007/s12666-021-02385-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02385-5

Keywords

Navigation