Log in

Microstructure Evolution and Mechanical Properties of Nano-structured Al–0.2 wt%Zr Alloy Fabricated by Accumulative Roll Bonding (ARB) Process

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

An Al–0.2 wt%Zr alloy was subjected to an accumulative roll bonding (ARB) process up to a strain of 8.0. The process led to ultrafine-grained materials with a mean grain size of 400 nm by 10-cycle ARB process, which was studied by atomic force microscopy (AFM). The Vickers microhardness measurements showed that the hardness value monotonously increased the number of ARB cycles and then reached a constant value of about 45 HV. Yield strength and tensile strength increased during the ARB process and reached to 125 and 158 MPa, respectively, after 10-cycles ARB process. The total elongation and uniform elongation were 65 and 48% before the ARB process and decreased after 10-cycle ARB to 17.5 and 6.5%, respectively. Also, after the tensile test, the fracture surfaces were studied by scanning electron microscope (SEM) and the result showed that the fracture mode in the 0 cycle (before ARB) and 1 cycle was ductile and changed to brittle with further ARB processing from 3 up to 10 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Borhani E, Jafarian H, Shibata A, and Tsuji N, Mater Trans 53 (2012) 1863.

    Article  Google Scholar 

  2. Valiev R Z, Estrin Y, Horita Z, Langdon T G, Zehetbauer M J, and Zhu Y T, JOM 58 (2006) 33.

    Article  Google Scholar 

  3. Valiev R Z. and Langdon T G, Prog Mater Sci 51 (2006) 881.

    Article  Google Scholar 

  4. Borhani E, Jafarian H, Terada D, Adachi H, and Tsuji N, Mater Trans 54 (2012) 72.

    Article  Google Scholar 

  5. Schafler E, and Kerber M B, Mater Sci Eng A 462 (2007) 139.

    Article  Google Scholar 

  6. Huang J Y, Zhu Y T, Jiang H, and Lowe T C, Acta Mater 49 (2001) 1497.

    Article  Google Scholar 

  7. Korbel A, Richert M, and Richert J, In Proceedings of the 2nd RISO International Symposium on Metallurgy and Material Science (1981), p 445. (in Denmark).

  8. Mizunuma S, Mater Sci Forum (2006) 185.

  9. Nakamura K, Neishi K, Kaneko K, Nakagaki M, and Horita Z, Mater Trans 45 (2004) 3338.

    Article  Google Scholar 

  10. Saito Y, Tsuji N, Utsunomiya H, Sakai T, and Hong R G, Scr Mater 39 (1998) 1221.

    Article  Google Scholar 

  11. Tsuji N, Saito Y, Lee S H, and Minamino Y, Adv Eng Mater 5 (2003) 338.

    Article  Google Scholar 

  12. Knipling K E, Dunand D C, and Seidman D N, Acta Mater 56 (2008) 1182.

    Article  Google Scholar 

  13. Humphreys F J, and Hatherly M, Recrystallization and Related Annealing Phenomena, 2nd ed, Elsevier, Amsterdam (2004).

    Google Scholar 

  14. Knipling K E, Dunand D C, and Seidman D N, Acta Mater 56 (2008) 114.

    Article  Google Scholar 

  15. Pirgazi H, Akbarzadeh A, Petrov R, and Kestens L, Mater Sci Eng A 497 (2008) 132.

    Article  Google Scholar 

  16. Saito Y, Utsunomiya H, Tsuji N, and Sakai T, Acta Mater 47 (1999) 579.

    Article  Google Scholar 

  17. Lee S H, Saito Y, Sakai T, and Utsunomiya H, Mater Sci Eng A 325 (2002) 228.

    Article  Google Scholar 

  18. Smirnova N A, Levit V I, Pilyugin V I, Kuznetsov R I, Davydova L S, and Sazonova V A, Fiz Met Metalloved 61 (1986) 1170.

    Google Scholar 

  19. Borhani E, Microstructure and Mechanical Property of Heavily Deformed AlSc Alloy Having Different Starting Microstructures, Ph.D. thesis, Kyto University, Japan (2011).

  20. Lee S H, Sakai T, Saito Y, Utsunomiya H, and Tsuji N, Mater Trans 40 (1999) 1422.

    Article  Google Scholar 

  21. Tohidi A A, Ketabchi M, and Hasannia A, Mater Sci Eng A 577 (2013) 43.

    Article  Google Scholar 

  22. Hansen N, Acta Metallurgica 25 (1977) 863.

    Article  Google Scholar 

  23. Totten G E, **e L, and Funatani K Handbook of Mechanical Design Alloy vol 164, p 627, CRC Press.

  24. May J, Amberger D, Dinkel M, Hoppel H W, and Goken M, Mater Sci Eng A 483–484 (2008) 481.

    Article  Google Scholar 

  25. Rezaei M R, Toroghinejad M R, and Ashrafzadeh F, Mater Process Tech 211 (2011) 1184.

    Article  Google Scholar 

  26. ASM handbooks, Fractography, vol 12.

  27. Azad B, Borhani E, and Mohammadian Semnani H R, Kovove Mater 54 (2016) 9.

    Google Scholar 

  28. Azad B, and Borhani E, J Min Metall Sect B 52 (2016) 93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Borhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azad, B., Semnani, H.M. & Borhani, E. Microstructure Evolution and Mechanical Properties of Nano-structured Al–0.2 wt%Zr Alloy Fabricated by Accumulative Roll Bonding (ARB) Process. Trans Indian Inst Met 70, 2725–2732 (2017). https://doi.org/10.1007/s12666-017-1133-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1133-7

Keywords

Navigation