Log in

Soil quality indicators in conventional and conservation tillage systems in the Brazilian Cerrado

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Conventional and conservation tillage systems can alter soil aggregation and total and labile soil organic matter (SOM) contents. This study aimed to determine the degree of soil aggregation, quantify total carbon (TC), permanganate oxidizable carbon (POXC), light organic matter (LOM), and potentially mineralizable carbon (CO2-C) contents in soils aggregates, and assess soil quality indexes at sites under conventional and conservation tillage in the Cerrado region of Minas Gerais State, Brazil. Four experimental areas were analyzed: a area under conventional tillage for 20 years, a area under no-till for 6 years, a area under no-till for 18 years, and a reference area of undisturbed Cerrado vegetation. Soil aggregates retained on 8.0–4.0 mm sieves were evaluated for size class distribution and mean weight diameter. TC, POXC, LOM, daily and Total CO2-C emissions were also analyzed. These data were used to calculate the C/N ratio and sensitivity, carbon pool, and lability indexes. The results of SOM compartments were in agreement with those obtained for the soil aggregation status. 6NT and 18NT had a higher proportion of macroaggregates and higher MWD values than CT in both layers. For other classes of aggregates, CT had the highest proportions of mesoaggregates at 0–0.05 m depth and microaggregates at 0–0.10 m depth. At 0–0.05 m depth, TC and LOM contents were highest in 6NT and 18NT aggregates. In comparing the soil indexes of managed areas, we found a similar pattern to that observed for macroaggregates, MWD, TC, and LOM. CA, 6NT, and 18NT aggregates had the largest CO2-C cumulative emissions at the end of the incubation period. Environmental conditions at no-till areas promoted macroaggregate formation and preserved TC and LOM contents, resulting in a high degree of aggregate stability. Soil quality indexes were sensitive to identify changes between the reference area and managed areas. Soil aggregates from no-till areas had higher CO2-C emissions and cumulative emissions than those from the conventional tillage area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson TH, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environment conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25:393–395. https://doi.org/10.1016/0038-0717(93)90140-7

    Article  Google Scholar 

  • Anderson JM, Ingram JSI (1989) Tropical soil biology and fertility: a handbook of methods. CAB International, Wallingford

    Google Scholar 

  • Andrade AT, Torres JLR, Paes JMV, Teixeira CM, Conde ABT (2018) Desafios do Sistema de plantio direto no Cerrado (No-till system challenges in the Cerrado biome). Infor Agropec 39:19–26

    Google Scholar 

  • Assunção SA, Pereira MG, Rosset JS, Berbara RLL, García AC (2019) Carbon input and the structural quality of soil organic matter as a function of agricultural management in a tropical climate region of Brazil. Sci Total Enviro 658:901–911. https://doi.org/10.1016/j.scitotenv.2018.12.271

    Article  Google Scholar 

  • Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil till Res 53:215–230. https://doi.org/10.1016/s0167-1987(99)00107-5

    Article  Google Scholar 

  • Blair GJ, Lefroy B, Lisle L (1995) Soil carbon fractions, based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Austr J Agric Res 46(7):1459–1466. https://doi.org/10.1071/AR9951459

    Article  Google Scholar 

  • Blanco-Canqui H, Lal R (2004) Mechanisms of carbon sequestration in soil aggregates. Crit Rev Plant Sci 23(6):481–504. https://doi.org/10.1080/07352680490886842

    Article  Google Scholar 

  • Bolinder MA, Angers DA, Greegorich EG, Carter MR (1999) The response of soil quality indicators to conservation management. Canad J Soil Sci 79(1):37–45

    Article  Google Scholar 

  • Briedis C, Sá JCM, Lal R, Tivet F, Franchini JC, Ferreira AO, Hartman DC, Schimiguel R, Bressan PT, Inagaki TM, Romaniw J, Gonçalves DRP (2018) How does no-till deliver carbon stabilization and saturation in highly weathered soils? CATENA 163:13–23. https://doi.org/10.1016/j.catena.2017.12.003

    Article  Google Scholar 

  • Briedis C, Baldock J, Moraes Sá JC, Santos JB, McGowan J, Milori DMBP (2020) Organic carbon pools and organic matter chemical composition in response to different land uses in southern Brazil. Eur J Soil Sci. https://doi.org/10.1111/ejss.12972

    Article  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  Google Scholar 

  • Brown GG, Silva E, Thomazini MJ, Niva CC, Decaëns T, Cunha L et al (2018) The role of soil fauna in soil health and delivery of ecosystem services. In: Reicosky D (ed) Managing soil health for sustainable agriculture, 1st edn. Burleigh Dodds Science Publishing Limited, Cambridge, pp 197–241

    Chapter  Google Scholar 

  • Buurman P, Roscoe R (2011) Different chemical composition of free light, occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields, Minas Gerais, Brazil: a pyrolysis-GC/MS study. Eur J Soil Sci 62(2):253–266. https://doi.org/10.1111/j.1365-2389.2010.01327.x

    Article  Google Scholar 

  • Cambardella CA, Elliott ET (1993) Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci Soc Am J 57(4):1071–1076. https://doi.org/10.2136/sssaj1993.0361599500570004003

    Article  Google Scholar 

  • Carvalho AM, Vale HM, Ferreira EM, Cordero AF, Barros NF, Costa MD (2008) Atividade microbiana de solo e serapilheira em áreas povoadas com Pinus elliottiie e Terminalia ivorensis (Microbial activity of soil and litter in areas with forest stands of Pinus elliottii e Terminalia ivorensis). Rev Bras Ci Solo 32:2709–2716

    Article  Google Scholar 

  • Chan KY, Bowman A, Oates A (2001) Oxidizible organic carbon fractions and soil quality changes in an Paleustalf under different pasture leys. Soil Sci 166(1):61–67. https://doi.org/10.1097/00010694-200101000-00009

    Article  Google Scholar 

  • Comin JJ, Ferreira LB, Santos LH, Paula Koucher L, Machado LN, Santos Junior E, Mafra AL, Kurtz C, Souza M, Brunetto G, Loss A (2018) Carbon and nitrogen contents and aggregation index of soil cultivated with onion for seven years using crop successions and rotations. Soil till Res 184:195–202. https://doi.org/10.1016/j.still.2018.08.002

    Article  Google Scholar 

  • Costa Junior C, Píccolo MC, Siqueira Neto M, Camargo PB, Cerri CC, Bernoux M (2012) Carbono em agregados do solo sob vegetação nativa, pastagem e sistemas agrícolas no bioma Cerrado (Carbon in soil aggregates under native vegetation, pasture and agricultural systems in the Brazilian savannah). Rev Bras Ci Solo 36:1311–1321. https://doi.org/10.1590/S0100-06832012000400025

    Article  Google Scholar 

  • Culman SW, Freeman M, Snapp SS (2012) Procedure for the determination of permanganate oxidizable carbon. Kellogg Biological Station-Long Term Ecological Research Protocols, Hickory Corners. http://lter.kbs.msu.edu/protocols/133

  • Culman SW, Snapp SS, Green JM, Gentry LE (2013) Short- and long-term labile soil carbon and nitrogen dynamics reflect management and predict corn agronomic performance. Agron J 105:493–502. https://doi.org/10.2134/agronj2012.0382

    Article  Google Scholar 

  • De-Polli H, Guerra JGM (1999) C, N e P na biomassa microbiana do solo. In: Santos GA, Camargo FAO (eds) Fundamentos da mat´eria orgˆanica do solo: ecossistemas tropicais e subtropicais. Genesis, Porto Alegre, pp 389–411

  • Duval ME, Martinez JM, Galantini JA (2020) Assessing soil quality indexes based on soil organic carbon fractions in different long-term wheat systems under semiarid conditions. Soil Use Manag 36:71–82. https://doi.org/10.1111/sum.12532

    Article  Google Scholar 

  • Ferreira EB, Cavalcanti PP, Nogueira DA (2013) ExpDes.pt: Experimental Designs pacakge (Portuguese). R package version 1.1.2

  • Fuentes-Llanillo R, Telles TS, Junior DS, Melo TR, Friedrich T, Kassam A (2021) Expansion of no-tillage practice in conservation agriculture in Brazil. Soil till Res 208:104877. https://doi.org/10.1016/j.still.2020.104877

    Article  Google Scholar 

  • Gonçalves AS, Monteiro MT, Guerra JGM, De-Polli H (2002) Biomassa microbiana em amostras de solos secadas ao ar e reumedecidas (Microbial biomass in air dried and rewetted soil samples). Pesq Agrop Bras 37(5):651–658. https://doi.org/10.1590/S0100-204X2002000500010

    Article  Google Scholar 

  • Hurisso TT, Culman SW, Horwath WR, Wade J, Cass D, Beniston JW, Bowles TM, Grandy AS, Franzluebbers AJ, Schipanski ME, Lucas ST, Ugarte CM (2016) Comparison of permanganate-oxidizable carbon and mineralizable carbon for assessment of organic matter stabilization and mineralization. Soil Sci Soc Am J 80(5):1352. https://doi.org/10.2136/sssaj2016.04.0106

    Article  Google Scholar 

  • IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Res Rep No 106 FAO Rome, 203

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry vol 5, pp 415–471

  • Jiang X, Hu Y, Bedell JH, **e D, Wright AL (2011) Soil organic carbon and nutrient content in aggregate-size fractions of a subtropical rice soil under variable tillage. Soil Use Manag 27:28–35. https://doi.org/10.1111/j.1475-2743.2010.00308.x

    Article  Google Scholar 

  • Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F et al (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15

    Article  Google Scholar 

  • Loss A, Pereira MG, Beutler SJ, Perin A, Anjos LHC (2013) Carbono mineralizável, carbono orgânico e nitrogênio em macroagregados de Latossolo sob diferentes sistemas de uso do solo no Cerrado Goiano (Mineralizable carbon, organic carbon and nitrogen in macroaggregates of an Oxisol under different systems soil usages in Cerrado Goiano). Semina 34(5):2153–2168

    Google Scholar 

  • Loss A, Costa EM, Pereira MG, Beutler SJ (2014) Agregação, matéria orgânica leve e carbono mineralizável em agregados do solo (Aggregation, light organic matter and carbon mineralization in soil aggregates). Rev Facultad Agron 113:01–08

    Google Scholar 

  • Mendonça ES, Matos ES (2005) Matéria orgânica do solo: métodos de análises (Soil organic matter: Methods of analysis). Ponte Nova: D & M Gráfica e Editora Ltda, 107

  • Nelson DW, Sommers LE (1996) Total carbono, organic carbono and organic matter. In: Black CA (ed) Methods of soil analysis. Part 3. Chemical methods. Soil Sci Am Amer Soc Agro, Madison, pp 961–1010

  • Pinto LASR, Mendonça OVT, Rossi CQ, Pereira MG, Barros FC (2018) Evolución y acumulación de C-CO2 en agregados biogénicos y fisiogénicos presentes en diferentes tipos de manejos agroecológicos (Evolution and accumulation of C-CO2 in biogenic and physicogenic aggregates of different agroecological management systems). Acta Agron 67:494–500. https://doi.org/10.15446/acag.v67n4.67923

    Article  Google Scholar 

  • R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Ramalho B, Dieckow J, Barth G, Simon PL, Mangrich AS, Brevilieri RC (2019) No-tillage and ryegrass grazing effects on stocks, stratification and lability of carbon and nitrogen in a subtropical Umbric Ferralsol. Eur J Soil Sci 71(6):1106–1119. https://doi.org/10.1111/ejss.12933

    Article  Google Scholar 

  • Ramnarine R, Voroney RP, Wagner-Riddle C, Dunfield KE (2015) Conventional and no-tillage effects on the distribution of crop residues and light fraction organic matter. Soil Sci Soc Am J 79(1):74–80. https://doi.org/10.2136/sssaj2014.05.0182

    Article  Google Scholar 

  • Ribeiro AC, Guimarães PTG, Alvarez V (1999) Recomendação para o uso de corretivos e fertilizantes em Minas Gerais (Recommendation for the use of correctives and fertilizers in Minas Gerais). Viçosa, MG, CFSEMG/UFV 359

  • Rosset JS, Lana MC, Pereira MG, Schiavo JA, Rampim L, Sarto MVM (2019) Organic matter and soil aggregation in agricultural systems with different adoption times. Semina 40(6):3443–3460. https://doi.org/10.5433/1679-0359.2019v40n6Supl3p3443

    Article  Google Scholar 

  • Sales RP, Portugal AF, Moreira JAA, Kondo MK, Pegoraro RF (2016) Qualidade física de um Latosso sob plantio direto e preparo convencional no semiárido (Physical quality of a Latosol under no-tillage and conventional tillage in the semi-arid region). Cien Agro 47(3):429–438. https://doi.org/10.5935/1806-6690.20160052

    Article  Google Scholar 

  • Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Araújo Filho JC, Oliveira JB, Cunha TJF (2018) Sistema Brasileiro de Classificação de Solos (Brazilian Soil Classification System). 5 ed., rev. e ampl. Brasília, DF: Embrapa, 356

  • Santos OAQ, Tavares OCH, García AC, Rossi CQ, Moura OVT, Pereira W, Pinto LASR, Berbara RLL, Pereira MG (2020) Fire lead to disturbance on organic carbon under sugarcane cultivation but is recovered by amendment with vinasse. Sci Total Environ 739:140063. https://doi.org/10.1016/j.scitotenv.2020.140063

    Article  Google Scholar 

  • Sato JH, Figueiredo CC, Marchao RL, Madari BE, Benedito LEC, Busato JG, Souza DM (2014) Methods of soil carbon determination in Brazilian savannah soil. Sci Agri 71(4):302–308. https://doi.org/10.1590/0103-9016-2013-0306

    Article  Google Scholar 

  • Schiller AP, Manfrin J, Eckhardt DCS, Seidel EP, Lana MC, Gonçalves AC Jr, Sampaio MC, Rego CARM (2018) Stability of aggregates and the processes that help in their formation and stabilization. Inter J Plant Soil Sci 22(5):1–14. https://doi.org/10.9734/IJPSS/2018/41056

    Article  Google Scholar 

  • Six J, Elliott E, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Bioch 32(14):2099–2103. https://doi.org/10.1016/s0038-0717(00)00179-6

    Article  Google Scholar 

  • Sohi SP, Mahieu N, Arah JRM, Powlson DS, Madari B, Gaunt JL (2001) A procedure for isolating soil organic matter fractions suitable for modelling. Soil Sci Soc Am J 65:1121–1128. https://doi.org/10.2136/sssaj2001.6541121x

    Article  Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy 12th ed. US Department of Agriculture, Natural Resources Conservation Service, US Government Printing Office, Washington DC, 360

  • Souza LHC, Matos ES, Magalhães CAS, Torre ER, Lamas FM, Lal R (2018) Soil carbon and nitrogen stocks and physical properties under no-till and conventional tillage cotton-based systems in the Brazilian Cerrado. Land Degr Develop 29(10):3405–3412. https://doi.org/10.1002/ldr.3105

    Article  Google Scholar 

  • Teixeira PC, Donagema GK, Fontana A, Teixeira WG (2017) Manual de métodos de análise de solos (Handbook of Soil Analysis Methods), 3rd edn. Embrapa, Brasília, pp 573

  • Torres JLR, Mazetto Júnior JC, Silva Júnior J, Vieira DMS, Souza ZM, Assis RL, Lemes EM (2019) Soil physical attributes and organic matter accumulation under no-tillage systems in the Cerrado. Soil Res 57(7):712–718. https://doi.org/10.1071/sr19047

    Article  Google Scholar 

  • Wade J, Culman SW, Hurisso TT, Miller RO, Baker L, Horwath WR (2018) Sources of variability that compromise mineralizable carbon as a soil health indicator. Soil Sci Soc Am J 82:243–252. https://doi.org/10.2136/sssaj2017.03.0105

    Article  Google Scholar 

  • Weil RR, Islam KR, Stine MA, Gruver JB, Samson-Liebig SE (2003) Estimating active carbon for soil quality assessment: a simplified method for lab and field use. Am J Altern Agric 18:3–17. https://doi.org/10.1079/AJAA200228

    Article  Google Scholar 

  • Zhang S, Li Q, Zhang X, Wei K, Chen L, Liang W (2012) Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil till Res 124:196–202. https://doi.org/10.1016/j.still.2012.06.007

    Article  Google Scholar 

  • Zheng H, Liu W, Zheng J, Luo Y, Li R, Wang H, Qi H (2018) Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. PLoS ONE 13(6):e0199523. https://doi.org/10.1371/journal.pone.0199523

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed by the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES, finance code 001). The Federal Institute of Triângulo Mineiro, campus Uberaba, Minas Gerais (Brazil) for allowing study in their experimental areas.

Funding

This work was funded by Fundação Agrisus; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Grant no. 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Gervasio Pereira.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Rodrigues Pinto, L.A., de Lima, S.S., da Silva, C.F. et al. Soil quality indicators in conventional and conservation tillage systems in the Brazilian Cerrado. Environ Earth Sci 81, 306 (2022). https://doi.org/10.1007/s12665-022-10426-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10426-5

Keywords

Navigation