Log in

Two-year comparative study of snow cover dynamics and its impact factors on glacier surface

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Snow cover on glacial surfaces is a sensitive environmental indicator. However, it is difficult to differentiate snow cover from a bare ice surface, and snow cover also changes rapidly during the melt season. Monitoring these dynamics requires sufficient time and spatial resolution; thus, traditional satellite data lack the necessary spatial resolution and rarely used to monitoring snow cover on glacier surface, which induced monitoring of snow dynamics on glacier is more challenging. Time-lapse photography has the advantage of obtaining images with high time and spatial resolution. By using an automated time-lapse digital camera, this paper documents two successive years snow cover dynamics on the Shiyi glacier and compared the meteorological conditions which induced different melt conditions. Monitoring indicate that the 2012 melt season experienced a higher snow cover fraction than the 2013 melt season because of a greater accumulated snow depth, lower air temperature and fewer sunlight hours. Successive photographs also indicate that, on the Shiyi glacier, atmospheric dust accelerates the snow melt speed and attenuates the snow depth. For the bare ice surface, the effects of atmospheric dust were reduced because the dusts were composed of Fine particles and are more easily washed away by melt water or rain. Studies on the Shiyi glacier indicate that the snow cover fraction is a key parameter that indicates the status of glacial accumulation or ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bernard É, Friedt JM, Tolle F et al (2013) Monitoring seasonal snow dynamics using ground based high resolution photography (AustreLovénbreen, Svalbard, 79°N). ISPRS J Photogramm Remote Sens 75:92–100. doi:10.1016/j.isprsjprs.2012.11.001

    Article  Google Scholar 

  • Corripio JG (2004) Snow surface albedo estimation using terrestrial photography. Int J Remote Sens 25(24):5705–5729. doi:10.1080/01431160410001709002

    Article  Google Scholar 

  • de Ruyter W, Martijn S, Oerlemans J, Björnsson H (2002) A method for monitoring glacier mass balance using satellite albedo measurements: application to Vatnajökull, Iceland. J Glaciol 48(161):267–278. doi:10.3189/172756502781831458

    Article  Google Scholar 

  • Dong Z, Li Z (2011) Characteristics of atmospheric dust deposition in snow on Glacier No. 72, Mount Tuomuer, China. Arct Antartc Alp Res 43(4):517–526. doi:10.1657/1938-4246-43.4.517

    Article  Google Scholar 

  • Dong Z, Li Z, **ao C et al (2010) Characteristics of aerosol dust in fresh snow in the Asian dust and non-dust periods at Urumqi glacier No. 1 of eastern Tian Shan, China. Environ Earth Sci 60:1361–1368. doi:10.1007/s12665-009-0271-6

    Article  Google Scholar 

  • Dong Z, Qin D, Ren J et al (2013) Characteristics of atmospheric dust deposition in snow on the glaciers of western Qilian Mountains. Acta Geograph Sin 68(1):25–35. doi:10.11821/xb201301005

    Google Scholar 

  • Dong Z, Qin D, Kang S et al (2014) Physicochemical characteristics and sources of atmospheric dust deposition in snow packs on the glaciers of western Qilian Mountains, China. Tellus B 66:20956. doi:10.3402/tellusb.v66.20956

    Article  Google Scholar 

  • Dumont M, Sirguey P, Arnaud Y et al (2011) Monitoring spatial and temporal variations of surface albedo on SantSorlin Glacier (French Alps) using terrestrial photography. Cryosphere 5:759–771. doi:10.5194/tc-5-759-2011

    Article  Google Scholar 

  • Floyd W, Weiler M (2008) Measuring snow accumulation and ablation dynamics during rain-on-snow events: innovative measurement techniques. Hydrol Processes 22:4805–4812. doi:10.1002/hyp.7142

    Article  Google Scholar 

  • Hinkler J, Ørbæk JB, Hansen BU (2003) Detection of spatial, temporal, and spectral surface changes in the Ny-Ålesund area 79°N Svalbard, using a low cost multispectral camera in combination with spectroradiometer measurements. Phys Chem Earth 28:1229–1239. doi:10.1016/j.pce.2003.08.059

    Article  Google Scholar 

  • Huang L, Li Z, Tian B et al (2011) Classification and snow line detection for glacial areas using the polarimetric SAR image. Remote Sens Environ 115:1721–1732. doi:10.1016/j.rse.2011.03.004

    Article  Google Scholar 

  • Huang L, Li Z, Tian B et al (2013) Monitoring glacier zones and snow/firn line changes in the Qinghai–Tibetan Plateau using C-band SAR imagery. Remote Sens Environ 137:17–30. doi:10.1016/j.rse.2013.05.016

    Article  Google Scholar 

  • Jaenicke J, Mayer C, Scharrer K et al (2006) The use of remote-sensing data for mass-balance studies at Myrdalsjökull ice cap, Iceland. J Glaciol 52(179):565–573. doi:10.3189/172756506781828340

    Article  Google Scholar 

  • Ke T, Zhang Z, Yang J (2009) Planning and multi-baseline digital close range photogrammetry. Geomat Inf Sci Wuhan Univ 34(1):44–47, 51 (in Chinese)

    Google Scholar 

  • Kienzle SW (2008) A new temperature based method to separate rain and snow. Hydrol Processes 22(26):5067–5085. doi:10.1002/hyp.7131

    Article  Google Scholar 

  • Köng M, Winther JG, Knudsen NT et al (2001) Firn-line detection on AustreOkstindbreen, Norway, with airborne multipolarization SAR. J Glaciol 47(157):251–257. doi:10.3189/172756501781832241

    Article  Google Scholar 

  • Kreutz KJ (2007) Ice core records: glaciochemistry. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Oxford, pp 1192–1198

    Chapter  Google Scholar 

  • Li ZX, Feng Q, Guo X et al (2014) The evolution and environmental significance of glaciochemistry during the ablation period in the north of Tibetan–Plateau, China. Quat Int 374:93–109. doi:10.1016/j.quaint.2014.06.071

    Google Scholar 

  • Liu S, Sun W, Shen Y et al (2003) Glacier changes since the Little Ice age maximum in the western Qilian Shan, Northwest China, and consequences of glacier runoff for water supply. J Glaciol 49(164):117–124. doi:10.3189/172756503781830926

    Article  Google Scholar 

  • Liu SY, Ding YJ, Li J et al (2005) Glaciers in response to recent climate warming in western China. Quat Sci 26(5):762–771 (in Chinese)

    Google Scholar 

  • Liu J, Chen R, Song Y et al (2012) Map** snow cover based on digital photogrammetry. J Glaciol Geocryol 34(3):618–624 (in Chinese)

    Google Scholar 

  • Liu J, Chen R, Song Y et al (2014) Observations of precipitation type using a time-lapse camera in a mountainous region and calculation of the rain/snow proportion based on the critical air temperature. Environ Earth Sci 73:1545–1554. doi:10.1007/s12665-014-3506-0

    Article  Google Scholar 

  • Maas HG, Dietrich R, Schwalbe E et al (2006) Analysis of the motion behavior of JakobshavnIsbræ glacier in Greenland by monocular image sequence analysis. In: Maas HG, Schneider D (eds), Int Soc Photogramm Remote Sens Arch vol XXXVI(5), Dresden, 25–27 Sept 2006, pp 179–183

  • Mass HG, Schneider D, Schwalbe E et al (2010) Photogrammetric determination of spatio-temporal velocity fields at glacier San Rafael in the Northern Patagonian Icefield. In: Mills JP, Barber DM, Newton I (eds) Int. Soc. Photogramm. Remote Sens. Arch. Vol XXXVIII(5), Newcastle upon Tyne, 21–24 June 2010, pp 417–421

  • Ming J, Du ZC, **ao CD et al (2012) Darkening of the mid-Himalaya glaciers since 2000 and the potential causes. Environ Res Lett 7:014021. doi:10.1088/1748-9326/7/1/014021

    Article  Google Scholar 

  • Painter TH, Deems JS, Belnap J et al (2010) Response of Colorado River runoff to dust radiative forcing in snow. Proc Natl Acad Sci USA 107(40):17125–17130. doi:10.1073/pnas.0913139107

    Article  Google Scholar 

  • Parajka J, Haas P, Kirnbauer R et al (2012) Potential of time-lapse photography of snow for hydrological purposes at the small catchment scale. Hydrol Processes 26:3327–3337. doi:10.1002/hyp.8389

    Article  Google Scholar 

  • Shi JC, Dozier J (1995) Inferring snow wetness using C-band data from SIR-C’s polarimetric synthetic aperture radar. IEEE Trans Geosci Remote Sens 33:905–914. doi:10.1109/36.406676

    Article  Google Scholar 

  • Yao TD, Thompson L, Yang W et al (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Chang 2:663–667. doi:10.1038/nclimate1580

    Article  Google Scholar 

  • Zhang ZX, Yang SC, Zhang JQ, Ke T (2007) Multi-baseline digital close-range photogrammetry. Geospatial Inf 5(1):1–4 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This study was mainly supported by the Chinese National Sciences Foundation Committee and the Chinese Academy of Sciences (41401078, Y251B21001, 91025013 and 41401040). The authors would also like to thank Prof. Liu Shiyin for providing the commercial software of Lensphoto (Ke et al. 2009; Zhang et al. 2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Chen, R., Han, C. et al. Two-year comparative study of snow cover dynamics and its impact factors on glacier surface. Environ Earth Sci 75, 197 (2016). https://doi.org/10.1007/s12665-015-5075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5075-2

Keywords

Navigation