Log in

A Sustainable Approach for the Valorization of Lignocellulosic Biomass in Active Photo- and Electrocatalyst Carbon Dots

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The recovery or degradation of organic wastes in the circular economy concept continues to be environmental protection challenges. In this study, we proposed a metal catalyst free production of useful non-doped (CDs) and nitrogen doped carbon dots (N-CDs) nanoparticles, generated from a greener hydrothermal top-down method, using paper scraps solid organic wastes from the pulp and paper industry. Both materials were fully characterized. At the same time, these high-added value materials were used as catalysts for the photocatalytic degradation of pollutants and for generating hydrogen through hydrogen evolution reaction (HER). The morphological study revealed the presence of nanoparticles with a higher carbon content than the raw biomass, from 13 to 51 wt% as assessed by X-ray photoelectron spectroscopy (XPS), ranging in size from 4.4 to 6.8 nm. The ability of these materials to catalyze the photodegradation of 4-nitrophenol has been tentatively investigated. The N-CDs proved to be more active than undoped-CDs to degrade 4-nitrophenol due to the smaller bandgap and more active sites available which will also accept the transferred electrons for H2 generation or 4-nitrophenol reduction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Wang, B., Lu, S.: The light of carbon dots: from mechanism to applications. Matter 5, 110–149 (2022). https://doi.org/10.1016/j.matt.2021.10.016

    Article  Google Scholar 

  2. Gao, P., **e, Z., Zheng, M.: Small nanoparticles bring big prospect: the synthesis, modification, photoluminescence and sensing applications of carbon dots. Chin. Chem. Lett. 33, 1659–1672 (2022). https://doi.org/10.1016/j.cclet.2021.09.085

    Article  Google Scholar 

  3. Cailotto, S., Amadio, E., Facchin, M., Selva, M., Pontoglio, E., Rizzolio, F., Riello, P., Toffoli, G., Benedetti, A., Perosa, A.: Carbon dots from sugars and ascorbic acid: role of the precursors on morphology, properties, toxicity, and drug uptake. ACS Med. Chem. Lett. 9, 832–837 (2018). https://doi.org/10.1021/acsmedchemlett.8b00240

    Article  Google Scholar 

  4. Dhenadhayalan, N., Chauhan, A., Lin, K.C., AlFantazi, A.: Architecting 3D prism shaped carbon dots/germanium/germanium oxide nanohybrid for photocatalytic degradation of pendimethalin and dinotefuran pesticides. Mater. Today Chem. 24, 100913 (2022). https://doi.org/10.1016/j.mtchem.2022.100913

    Article  Google Scholar 

  5. Hamadamin, A., Benazzi, V., Campalani, C., Quattri, L., Ravelli, D., Hussain, F., Perosa, A., Selva, M., Protti, S.: Nitrogen-doped carbon dots as biobased catalysts for visible light driven 1,2-functionalization of olefins through an atom transfer radical addition process. Chem. Cat. Chem. 15, 1–7 (2023). https://doi.org/10.1002/cctc.202300708

    Article  Google Scholar 

  6. Joaquim, C., Rodríguez-carballo, G., Silva, G.E., Pinto, L., Castro, E., Algarra, M.: Nitrogen doped carbon dots as a photocatalyst based on biomass. Life Cycle Assess. (2023). https://doi.org/10.1016/j.jclepro.2023.138728

    Article  Google Scholar 

  7. Liu, J., Li, R., Yang, B.: Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent. Sci. 6, 2179–2195 (2020). https://doi.org/10.1021/acscentsci.0c01306

    Article  Google Scholar 

  8. Algarra, M., Pérez-Martín, M., Cifuentes-Rueda, M., Jiménez-Jiménez, J., Esteves Da Silva, J.C.G., Bandosz, T.J., Rodríguez-Castellón, E., López Navarrete, J.T., Casado, J.: Carbon dots obtained using hydrothermal treatment of formaldehyde. Cell imaging in vitro. Nanoscale. 6, 9071–9077 (2014). https://doi.org/10.1039/c4nr01585a

    Article  Google Scholar 

  9. Gao, P., Hui, H., Guo, C., Liu, Y., Su, Y., Huang, X., Guo, K., Shang, W., Jiang, J., Tian, J.: Renal clearing carbon dots-based near-infrared fluorescent super-small nanoprobe for renal imaging. Carbon N. Y. 201, 805–814 (2023). https://doi.org/10.1016/j.carbon.2022.09.052

    Article  Google Scholar 

  10. Zhao, P., **, B., Zhang, Q., Peng, R.: Graphitic-C3N4 quantum dots modified FeOOH for photo-Fenton degradation of organic pollutants. Appl. Surf. Sci. 586, 152792 (2022). https://doi.org/10.1016/j.apsusc.2022.152792

    Article  Google Scholar 

  11. Fu, M., Li, M., Zhao, Y., Bai, Y., Fang, X., Kang, X., Yang, M., Wei, Y., Xu, X.: A study on the high efficiency reduction ofp-nitrophenol (4-NP) by a Fe(OH)3/Fe2O3@Au composite catalyst. RSC Adv. 11, 26502–26508 (2021). https://doi.org/10.1039/d1ra04073a

    Article  Google Scholar 

  12. Shi, W., Hao, C., Fu, Y., Guo, F., Tang, Y., Yan, X.: Enhancement of synergistic effect photocatalytic/persulfate activation for degradation of antibiotics by the combination of photo-induced electrons and carbon dots. Chem. Eng. J. 433, 133741 (2022). https://doi.org/10.1016/j.cej.2021.133741

    Article  Google Scholar 

  13. Mazari, S.A., Ali, E., Abro, R., Khan, F.S.A., Ahmed, I., Ahmed, M., Nizamuddin, S., Siddiqui, T.H., Hossain, N., Mubarak, N.M., Shah, A.: Nanomaterials: applications, waste-handling, environmental toxicities, and future challenges—a review. J. Environ. Chem. Eng. 9, 105028 (2021). https://doi.org/10.1016/j.jece.2021.105028

    Article  Google Scholar 

  14. Karagianni, A., Tsierkezos, N.G., Prato, M., Terrones, M., Kordatos, K.: V: Application of carbon-based quantum dots in photodynamic therapy. Carbon N. Y. 203, 273–310 (2023). https://doi.org/10.1016/j.carbon.2022.11.026

    Article  Google Scholar 

  15. Wang, C., Xu, J., Zhang, R., Zhao, W.: Facile and low-energy-consumption synthesis of dual-functional carbon dots from Cornus walteri leaves for detection of p-nitrophenol and photocatalytic degradation of dyes. Colloids Surfaces Physicochem. Eng. Asp. 640, 128351 (2022). https://doi.org/10.1016/j.colsurfa.2022.128351

    Article  Google Scholar 

  16. Kautish, P., Khare, A., Sharma, R.: Values, sustainability consciousness and intentions for SDG endorsement. Mark. Intell. Plan. 38, 921–939 (2020). https://doi.org/10.1108/MIP-09-2019-0490

    Article  Google Scholar 

  17. Filippini, G., Prato, M., Rosso, C.: Carbon dots as nano-organocatalysts for synthetic applications. ACS Catal. 10, 8090–8105 (2020). https://doi.org/10.1021/acscatal.0c01989

    Article  Google Scholar 

  18. Ladomenou, K., Landrou, G., Charalambidis, G., Nikoloudakis, E., Coutsolelos, A.G.: Carbon dots for photocatalytic H2 production in aqueous media with molecular Co catalysts. Sustain. Energy Fuels. 5, 449–458 (2021). https://doi.org/10.1039/d0se01630f

    Article  Google Scholar 

  19. Bhunia, S., Ghorai, N., Burai, S., Purkayastha, P., Ghosh, H.N., Mondal, S.: Unraveling the carrier dynamics and photocatalytic pathway in carbon dots and pollutants of wastewater system. J. Phys. Chem. C 125, 27252–27259 (2021). https://doi.org/10.1021/acs.jpcc.1c06135

    Article  Google Scholar 

  20. Hebbar, A., Selvaraj, R., Vinayagam, R., Varadavenkatesan, T., Kumar, P.S., Duc, P.A., Rangasamy, G.: A critical review on the environmental applications of carbon dots. Chemosphere 313, 137308 (2023). https://doi.org/10.1016/j.chemosphere.2022.137308

    Article  Google Scholar 

  21. Peng, Z., Zhou, Y., Ji, C., Pardo, J., Mintz, K.J., Pandey, R.R., Chusuei, C.C., Graham, R.M., Yan, G., Leblanc, R.M.: Facile synthesis of “boron-doped” carbon dots and their application in visible-light-driven photocatalytic degradation of organic dyes. Nanomaterials 10, 1–17 (2020). https://doi.org/10.3390/nano10081560

    Article  Google Scholar 

  22. Farshbaf, M., Davaran, S., Rahimi, F., Annabi, N., Salehi, R., Akbarzadeh, A.: Carbon quantum dots: recent progresses on synthesis, surface modification and applications. Artif. Cells Nanomed. Biotechnol. 46, 1331–1348 (2018). https://doi.org/10.1080/21691401.2017.1377725

    Article  Google Scholar 

  23. Ozyurt, D., Al Kobaisi, M., Hocking, R.K., Fox, B.: Properties, synthesis, and applications of carbon dots: a review. Carbon Trends. 12, 100276 (2023). https://doi.org/10.1016/j.cartre.2023.100276

    Article  Google Scholar 

  24. Wu, H., Lu, S., Yang, B.: Carbon-dot-enhanced electrocatalytic hydrogen evolution. Acc. Mater. Res. 3, 319–330 (2022). https://doi.org/10.1021/accountsmr.1c00194

    Article  Google Scholar 

  25. Bai, J., **ao, N., Wang, Y., Li, H., Liu, C., **ao, J., Wei, Y., Guo, Z., Qiu, J.: Coal tar pitch derived nitrogen-doped carbon dots with adjustable particle size for photocatalytic hydrogen generation. Carbon N. Y. 174, 750–756 (2021). https://doi.org/10.1016/j.carbon.2020.10.088

    Article  Google Scholar 

  26. Ma, G., Gao, S., Tang, G., Chen, F., Lang, X., Qiu, X., Song, X.: Development of starch-based amorphous CoOx self-supporting carbon aerogel electrocatalyst for hydrogen evolution. Carbohydr. Polym. 314, 120942 (2023). https://doi.org/10.1016/j.carbpol.2023.120942

    Article  Google Scholar 

  27. Raj, T., Chandrasekhar, K., Naresh Kumar, A., Kim, S.H.: Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: a sustainable approach. Renew. Sustain. Energy Rev. 158, 112130 (2022). https://doi.org/10.1016/j.rser.2022.112130

    Article  Google Scholar 

  28. Liao, X., Chen, C., Zhou, R., Huang, Q., Liang, Q., Huang, Z., Zhang, Y., Hu, H., Liang, Y.: Comparison of N-doped carbon dots synthesized from the main components of plants including cellulose, lignin, and xylose: characterized, fluorescence mechanism, and potential applications. Dye. Pigment. 183, 108725 (2020). https://doi.org/10.1016/j.dyepig.2020.108725

    Article  Google Scholar 

  29. Song, X., Zhao, S., Xu, Y., Chen, X., Wang, S., Zhao, P., Pu, Y., Ragauskas, A.J.: Preparation, properties, and application of lignocellulosic-based fluorescent carbon dots. Chem. Sus. Chem. (2022). https://doi.org/10.1002/cssc.202102486

    Article  Google Scholar 

  30. Rodríguez-Padrón, D., Algarra, M., Tarelho, L.A.C., Frade, J., Franco, A., De Miguel, G., Jiménez, J., Rodríguez-Castellón, E., Luque, R.: Catalyzed microwave-assisted preparation of carbon quantum dots from lignocellulosic residues. ACS Sustain. Chem. Eng. 6, 7200–7205 (2018). https://doi.org/10.1021/acssuschemeng.7b03848

    Article  Google Scholar 

  31. Raja, S., da Silva, G.T.S.T., Anbu, S., Ribeiro, C., Mattoso, L.H.C.: Biomass-derived carbon quantum dot: “On–off-on” fluorescent sensor for rapid detection of multi-metal ions and green photocatalytic CO2 reduction in water. Biomass Convers. Biorefin. (2023). https://doi.org/10.1007/s13399-023-04247-0

    Article  Google Scholar 

  32. Fan, Y., Wu, D., Zhang, S., Zhang, L., Hu, W., Zhu, C., Gong, X.: Effective photodegradation of 4-nitrophenol with CuO nano particles prepared by ionic liquids/water system. Green Chem. Eng. 3, 15–24 (2022). https://doi.org/10.1016/j.gce.2021.07.009

    Article  Google Scholar 

  33. Skiba, M., Vorobyova, V., Pivovarov, A., Trus, I.: Preparation of silver nanoparticles using atmospheric discharge plasma for catalytic reduction of p-nitrophenol: the influence of pressure in the reactor. Pigment Resin Technol. 49, 449–456 (2020). https://doi.org/10.1108/PRT-09-2019-0081

    Article  Google Scholar 

  34. Zulfajri, M., Sudewi, S., Damayanti, R., Huang, G.G.: Rambutan seed waste-derived nitrogen-doped carbon dots with l-aspartic acid for the sensing of Congo red dye. RSC Adv. 13, 6422–6432 (2023). https://doi.org/10.1039/d2ra07620a

    Article  Google Scholar 

  35. Park, S.J., Park, J.Y., Chung, J.W., Yang, H.K., Moon, B.K., Yi, S.S.: Color tunable carbon quantum dots from wasted paper by different solvents for anti-counterfeiting and fluorescent flexible film. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123200

    Article  Google Scholar 

  36. Standard Methods: International standard of the inhibitory effect of water samples. In: Standard Methods (2007)

  37. González-Morán, S., González, B., Vicente, M.A., Trujillano, R., Rives, V., Gil, A., Korili, S.A.: Application of birnessite–type solids prepared by sol–gel and oxidation methods in photocatalytic degradation of 4–nitrophenol. Environ. Technol. (2020). https://doi.org/10.1080/09593330.2020.1791968

    Article  Google Scholar 

  38. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  39. Faleeva, Y.M., Lavrenov, V.A., Zaichenko, V.M.: Investigation of plant biomass two-stage pyrolysis based on three major components: cellulose, hemicellulose, and lignin. Biomass Convers. Biorefin. (2022). https://doi.org/10.1007/s13399-022-03385-1

    Article  Google Scholar 

  40. Yang, H., Yan, R., Chin, T., Liang, D.T., Chen, H., Zheng, C.: Thermogravimetric analysis—Fourier transform infrared analysis of palm oil waste pyrolysis. Energy Fuels 18, 1814–1821 (2004). https://doi.org/10.1021/ef030193m

    Article  Google Scholar 

  41. Huang, X., Yin, H., Zhang, B., Mei, N., Mu, L.: Pyrolysis of lignin (De–alkaline) via TG/DSC–FTIR and TG–MS: pyrolysis characteristics, thermo-kinetics, and gas products. Biomass Convers. Biorefin. (2022). https://doi.org/10.1007/s13399-022-02387-3

    Article  Google Scholar 

  42. Pallavolu, M.R., Prabhu, S., Nallapureddy, R.R., Kumar, A.S., Banerjee, A.N., Joo, S.W.: Bio-derived graphitic carbon quantum dot encapsulated S- and N-doped graphene sheets with unusual battery-type behavior for high-performance supercapacitor. Carbon N. Y. 202, 93–102 (2023). https://doi.org/10.1016/j.carbon.2022.10.077

    Article  Google Scholar 

  43. Andrade, P.F., Nakazato, G., Durán, N.: Additive interaction of carbon dots extracted from soluble coffee and biogenic silver nanoparticles against bacteria. J. Phys. Conf. Ser. (2017). https://doi.org/10.1088/1742-6596/838/1/012028

    Article  Google Scholar 

  44. da Silva Souza, D.R., Caminhas, L.D., de Mesquita, J.P., Pereira, F.V.: Luminescent carbon dots obtained from cellulose. Mater. Chem. Phys. 203, 148–155 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.001

    Article  Google Scholar 

  45. Riaz, S., Park, S.J.: Thioacetamide-derived nitrogen and sulfur co-doped carbon quantum dots for “green” quantum dot solar cells. J. Ind. Eng. Chem. 105, 111–120 (2022). https://doi.org/10.1016/j.jiec.2021.09.009

    Article  Google Scholar 

  46. Yuan, H., Yu, J., Feng, S., Gong, Y.: Highly photoluminescent pH-independent nitrogen-doped carbon dots for sensitive and selective sensing of p-nitrophenol. RSC Adv. 6, 15192–15200 (2016). https://doi.org/10.1039/c5ra26870b

    Article  Google Scholar 

  47. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D.B.: Handbook of X-ray electron spectroscopy, (1992)

  48. Chang, Q., Yang, S., Li, L., Xue, C., Li, Y., Wang, Y., Hu, S., Yang, J., Zhang, F.: Loading sulfur and nitrogen co-doped carbon dots onto g-C3N4 nanosheets for an efficient photocatalytic reduction of 4-nitrophenol. Dalt. Trans. 47, 6435–6443 (2018). https://doi.org/10.1039/c8dt00735g

    Article  Google Scholar 

  49. **, Y., Tang, W., Wang, J., Ren, F., Chen, Z., Sun, Z., Ren, P.G.: Construction of biomass derived carbon quantum dots modified TiO2 photocatalysts with superior photocatalytic activity for methylene blue degradation. J. Alloys Compd. 932, 167627 (2023). https://doi.org/10.1016/j.jallcom.2022.167627

    Article  Google Scholar 

  50. Yang, H.L., Bai, L.F., Geng, Z.R., Chen, H., Xu, L.T., **e, Y.C., Wang, D.J., Gu, H.W., Wang, X.M.: Carbon quantum dots: Preparation, optical properties, and biomedical applications. Mater. Today Adv. 18, 100376 (2023). https://doi.org/10.1016/j.mtadv.2023.100376

    Article  Google Scholar 

  51. De, B., Karak, N.: A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv. 3, 8286–8290 (2013). https://doi.org/10.1039/c3ra00088e

    Article  Google Scholar 

  52. Wang, C.Y., Shang, S., Zheng, X., Lei, P., Han, J., Yuan, L., Li, Z., Wang, R., Gong, W., Tang, J., Yang, Y.: Fluorescent sensors based on Cu-doped carbon quantum dots for the detection of rutin. J. Braz. Chem. Soc. 30, 988–996 (2019). https://doi.org/10.21577/0103-5053.20180245

    Article  Google Scholar 

  53. Anitha, T., Mrinalini, M., Vani, D., Prasanthkumar, S., Rajender Reddy, K., Giribabu, L.: Synthesis and opto-electronic properties of BODIPY o-OPhos systems. Photochem. Photobiol. 96, 1182–1190 (2020). https://doi.org/10.1111/php.13306

    Article  Google Scholar 

  54. Omar, N.A.S., Fen, Y.W., Ramli, I., Hashim, H.S., Ramdzan, N.S.M., Fauzi, N.I.M.: A review on carbon dots: synthesis, characterization and its application in optical sensor for environmental monitoring. Nanomaterials (2022). https://doi.org/10.3390/nano12142365

    Article  Google Scholar 

  55. Das, D., Dutta, R.K.: N-doped carbon dots synthesized from ethylene glycol and $β$-alanine for detection of Cr(VI) and 4-nitrophenol via photoluminescence quenching. ACS Appl. Nano Mater. 4, 3444–3454 (2021). https://doi.org/10.1021/acsanm.0c03329

    Article  Google Scholar 

  56. Coleman, R.N., Qureshi, A.A.: Microtox® and Spirillum volutans tests for assessing toxicity of environmental samples. Bull. Environ. Contam. Toxicol. 35, 443–451 (1985). https://doi.org/10.1007/BF01636536

    Article  Google Scholar 

  57. Zhao, F., Meng, H., Yan, L., Wang, B., Zhao, Y.: Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo. Sci. Bull. 60, 3–20 (2015). https://doi.org/10.1007/s11434-014-0700-0

    Article  Google Scholar 

  58. Sutcu, M., Akkurt, S.: The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceram. Int. 35, 2625–2631 (2009). https://doi.org/10.1016/j.ceramint.2009.02.027

    Article  Google Scholar 

  59. Lakshmi, K., Jayashri, R., Kadirvelu, K.: Photoreduction of 4-nitrophenol catalysed by carbon quantum dots embedded cerium oxide nanocomposite. J. Mater. Sci. Mater. Electron. 34, 1–13 (2023). https://doi.org/10.1007/s10854-023-11568-3

    Article  Google Scholar 

  60. Mahto, M.K., Samanta, D., Konar, S., Kalita, H., Pathak, A.: N, S doped carbon dots—plasmonic Au nanocomposites for visible-light photocatalytic reduction of nitroaromatics. J. Mater. Res. 33, 3906–3916 (2018). https://doi.org/10.1557/jmr.2018.324

    Article  Google Scholar 

  61. Saini, B., Singh, S., Mukherjee, T.K.: Nanocatalysis under nanoconfinement: a metal-free hybrid coacervate nanodroplet as a catalytic nanoreactor for efficient redox and photocatalytic reactions. ACS Appl. Mater. Interfaces 13, 51117–51131 (2021). https://doi.org/10.1021/acsami.1c17106

    Article  Google Scholar 

  62. Jiang, J., Ji, R., Gu, P.Y., Wang, P., Zhou, S., Chen, Z., Xu, Q.: Facile preparation of a multicomponent catalytic system Bi2O3/Bi2S3/CDs with an exceptional catalytic activity in the photocatalytic reduction of 4-nitrophenol. Colloids Interface Sci. Commun. 51, 100678 (2022). https://doi.org/10.1016/j.colcom.2022.100678

    Article  Google Scholar 

  63. Chen, Z., Wei, W., Chen, H., Ni, B.J.: Eco-designed electrocatalysts for water splitting: a path toward carbon neutrality. Int. J. Hydrog. Energy 48, 6288–6307 (2023). https://doi.org/10.1016/j.ijhydene.2022.03.046

    Article  Google Scholar 

  64. Prabu, N., Saravanan, R.S.A., Kesavan, T., Maduraiveeran, G., Sasidharan, M.: An efficient palm waste derived hierarchical porous carbon towards electrocatalytic hydrogen evolution reaction. Carbon N. Y. 152, 188–197 (2019). https://doi.org/10.1016/j.carbon.2019.06.016

    Article  Google Scholar 

  65. Liu, Z., Li, B., Feng, Y., Jia, D., Li, C., Zhou, Y.: N-doped sp2/sp3 carbon derived from carbon dots to boost the performance of ruthenium for efficient hydrogen evolution reaction. Small Methods (2022). https://doi.org/10.1002/smtd.202200637

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the CNPq, CAPES-PrInt, CAPES (financial code 001), FAPESC, and INCT-Catálise. The authors also thank the Universidad Pública de Navarra for a post-doctoral María Zambrano grant financed by the European Union-Next Generation EU. MA thanks to the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) through project PID2021-122613OB-I00. This research was also funded by the Spanish Ministry of Science and Innovation (PID2021-126235OB-C32 funded by MCIN/ AEI/10.13039/501100011033 / and FEDER funds and TED2021-130756B-C31 MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” by the European Union NextGenerationEU/PRTR).

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico,402691/2021-0,Rosely Aparecida Peralta,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior,PrInt,Herculys Bernardo Jorge,Financial code 001,Rosely Aparecida Peralta,Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina,general,Rosely Peralta,Instituto Nacional de Ciência e Tecnologia de Catálise em Sistemas Moleculares e Nanoestruturados,INCT-Catálise,Rosely Aparecida Peralta,Ministerio de Ciencia,Innovación y Universidades,MCIN/AEI/10.13039/501100011033,Enrique Rodríguez-Castellon,TED2021-130756B-C31,Enrique Rodríguez-Castellon,Ministerio de Ciencia e Innovación,PID2021-126235OB-C32,Manuel Algarra

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuel Algarra or Rosely Aparecida Peralta.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1141 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jorge, H.B., Della-Rocca, D.G., Herrera, E. et al. A Sustainable Approach for the Valorization of Lignocellulosic Biomass in Active Photo- and Electrocatalyst Carbon Dots. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02610-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02610-4

Keywords

Navigation