Log in

Advanced Arc Plasma Synthesis of Biomorphic Silicon Carbide Using Charcoal and Silicon Dioxide in Air

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This work presents the results revealing the possibility of obtaining a cubic phase of silicon carbide with features of a biomorphic structure. Renewable plant raw materials were used as a source of carbon, in particular, pyrolyzed sawdust, which is a waste of a timber enterprise. Silicon dioxide powder was used as a source of silicon. The synthesis was realized using DC arc discharge plasma initiated in an open air. In this case, the oxidation of the synthesis products was prevented due to the effect of the reaction volume self-shielding from atmospheric oxygen. It was possible due to the generation of protective gaseous medium predominantly consisting of carbon dioxide and monoxide. The dependences of the product phase composition on the supplied energy and composition of initial components were established. The synthesis product was characterized by a significant excess of carbon, which was a caused by the erosion of the electrodes. After removal of chemically unbound carbon from synthesis product by annealing in an atmospheric furnace at 850 °C, obtained powder was sintered by the spark plasma sintering method. In the result, a bulk ceramic sample was obtained in which the only one crystalline phase of silicon carbide with a lattice parameter of 4.359 Å was identified.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data available within the article or its supplementary materials.

References

  1. Yu, M., Zhang, G.J., Saunders, T.: Wood-derived ultra-high temperature carbides and their composites: a review. Ceram. Int. 46, 5536–5547 (2020). https://doi.org/10.1016/j.ceramint.2019.11.104

    Article  Google Scholar 

  2. Jayakumari, S., Vullum, P.E., van Helvoort, A.T.J., Tangstad, M.: SiC crystalline micro bullets on bio-carbon based charcoal substrate. J. Cryst. Growth. 545, 125740 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125740

    Article  Google Scholar 

  3. Kaarik, M., Arulepp, M., Kook, M., Kozlova, J., Ritslaid, P., Aruvali, J., Maeorg, U., Sammelselg, V., Leis, J.: High-performance microporous carbon from deciduous wood-origin metal carbide. Microporous Mesoporous Mater. 278, 14–22 (2019). https://doi.org/10.1016/j.micromeso.2018.11.010

    Article  Google Scholar 

  4. Gomez-Martín, A., Orihuela, M.P., Becerra, J.A., Martinez-Fernandez, J., Ramirez-Rico, J.: Permeability and mechanical integrity of porous biomorphic SiC ceramics for application as hot-gas filters. Mater. Des. 107, 450–460 (2016). https://doi.org/10.1016/j.matdes.2016.06.060

    Article  Google Scholar 

  5. Kormann, M., Gerhard, H., Popovska, N.: Comparative study of carbide-derived carbons obtained from biomorphic TiC and SiC structures. Carbon 47, 242–250 (2009). https://doi.org/10.1016/j.carbon.2008.10.002

    Article  Google Scholar 

  6. Kim, J.W., Myoung, S.W., Kim, H.C., Lee, J.H., Jung, Y.G., Jo, C.Y.: Synthesis of SiC microtubes with radial morphology using biomorphic carbon template. Mater. Sci. Eng. A 434, 171–177 (2006). https://doi.org/10.1016/j.msea.2006.06.135

    Article  Google Scholar 

  7. Qian, J., Wang, J., Hou, G., Qiao, G., **, Z.: Preparation and characterization of biomorphic SiC hollow fibers from wood by chemical vapor infiltration. Scr. Mater. 53, 1363–1368 (2005). https://doi.org/10.1016/j.scriptamat.2005.08.029

    Article  Google Scholar 

  8. Lee, D.J., Jang, J.J., Park, H.S., Kim, Y.C., Lim, K.H., Park, S.B., Hong, S.H.: Fabrication of biomorphic SiC composites using wood preforms with different structures. Ceram. Int. 38, 3089–3095 (2012). https://doi.org/10.1016/j.ceramint.2011.12.008

    Article  Google Scholar 

  9. Streitwieser, D.A., Popovska, N., Gerhard, H., Emig, G.: Application of the chemical vapor infiltration and reaction (CVI-R) technique for the preparation of highly porous biomorphic SiC ceramics derived from paper. J. Eur. Ceram. Soc. 25, 817–828 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.04.006

    Article  Google Scholar 

  10. Pappacena, K.E., Gentry, S.P., Wilkes, T.E., Johnson, M.T., **e, S., Davis, A., Faber, K.T.: Effect of pyrolyzation temperature on wood-derived carbon and silicon carbide. J. Eur. Ceram. Soc. 29, 3069–3077 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.04.040

    Article  Google Scholar 

  11. Qian, J., Wang, J., **, Z.: Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal. Mater. Sci. Eng. A 371, 229–235 (2004). https://doi.org/10.1016/j.msea.2003.11.051

    Article  Google Scholar 

  12. Presas, M., Pastor, J.Y., Llorca, J., Arellano Lopez, A.R., Martınez Fernandez, J., Sepulveda, R.: Microstructure and fracture properties of biomorphic SiC. Int. J. Refract. Met. Hard Mater. 24, 49–54 (2006). https://doi.org/10.1016/j.ijrmhm.2005.07.003

    Article  Google Scholar 

  13. Bautista, M.A., Quispe Cancapa, J., Martinez Fernandez, J., Rodriguez, M.A., Singh, M.: Microstructural and mechanical evaluation of porous biomorphic silicon carbide for high temperature filtering applications. J. Eur. Ceram. Soc. 31, 1325–1332 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.06.014

    Article  Google Scholar 

  14. Li, J., Yu, S., Ge, M., Wei, X., Qian, Y., Zhou, Y., Zhang, W.: Fabrication and characterization of biomorphic cellular C/SiC–ZrC composite ceramics from wood. Ceram. Int. 41, 7853–7859 (2015). https://doi.org/10.1016/j.ceramint.2015.02.122

    Article  Google Scholar 

  15. Borrajo, J.P., Serra, J., Liste, S., Gonzalez, P., Chiussi, S., Leon, B., Perez-Amor, M.: Pulsed laser deposition of hydroxylapatite thin films on biomorphic silicon carbide ceramics. Appl. Surf. Sci. 248, 355–359 (2005). https://doi.org/10.1016/j.apsusc.2005.03.051

    Article  Google Scholar 

  16. Hou, G., **, Z., Qian, J.: Effect of starting Si contents on the properties and structure of biomorphic SiC ceramics. J. Mater. Process. Technol. 182, 34–38 (2007). https://doi.org/10.1016/j.jmatprotec.2006.07.003

    Article  Google Scholar 

  17. Pavon, J.M.C., Alonso, E.V., Cordero, M.T.S., Torres, A.G.B., López-Cepero, J.M.: Use of spectroscopic techniques for the chemical analysis of biomorphic silicon carbide ceramics. Anal. Chim. Acta. 528, 129–134 (2005). https://doi.org/10.1016/j.aca.2004.09.090

    Article  Google Scholar 

  18. Qian, J.M., Wang, J.P., Qiao, G.J., **, Z.H.: Preparation of porous SiC ceramic with a woodlike microstructure by sol-gel and carbothermal reduction processing. J. Eur. Ceram. Soc. 24, 3251–3259 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.10.042

    Article  Google Scholar 

  19. Wu, H., Zhang, T., Li, Y.: Fabrication of biomorphic ZrC/C ceramics by sol–gel and carbothermal reduction processing. Ceram. Int. 41, 13034–13041 (2015). https://doi.org/10.1016/j.ceramint.2015.07.004

    Article  Google Scholar 

  20. Li, Y., **e, S., Wei, B., Lian, G., Zhou, W., Tang, D., Zou, X., Liu, X., Wang, G.: Aligned small α-SiC nanorods on β-SiC particles grown in an arc-discharge. Solid State Commun. 119, 51–53 (2001). https://doi.org/10.1016/S0038-1098(01)00196-X

    Article  Google Scholar 

  21. Li, Y.B., **e, S.S., Zou, X.P., Tang, D.S., Liu, Z.Q., Zhou, W.Y., Wang, G.: Large-scale synthesis of β-SiC nanorods in the arc-discharge. J. Cryst. Growth. 233, 125–128 (2001). https://doi.org/10.1016/S0022-0248(01)00597-8

    Article  Google Scholar 

  22. Chiu, S.C., Huang, C.W., Li, Y.Y.: Synthesis of high-purity silicon carbide nanowires by a catalyst-free arc-discharge method. J. Phys. Chem. C 111, 10294–10297 (2007). https://doi.org/10.1021/jp0687192

    Article  Google Scholar 

  23. Pak, A., Ivashutenko, A., Zakharova, A., Vassilyeva, Y.: Cubic SiC nanowire synthesis by DC arc discharge under ambient air conditions. Surf. Coat. Technol. 387, 125554 (2020). https://doi.org/10.1016/j.surfcoat.2020.125554

    Article  Google Scholar 

  24. Pak, A., Shanenkov, I., Mamontov, G., Kokorina, A.: Vacuumless synthesis of tungsten carbide in a self-shielding atmospheric plasma of DC arc discharge. Int. J. Refract. Met. Hard Mater. 93, 105343 (2020). https://doi.org/10.1016/j.ijrmhm.2020.105343

    Article  Google Scholar 

  25. Su, Y., Wei, H., Li, T., Geng, H., Zhang, Y.: Low-cost synthesis of single-walled carbon nanotubes by low-pressure air arc discharge. Mater. Res. Bull. 50, 23–25 (2014). https://doi.org/10.1016/j.materresbull.2013.10.013

    Article  Google Scholar 

  26. Joseph Berkmans, A., Jagannatham, M., Rohit Reddy, D., Haridoss, P.: Synthesis of thin bundled single walled carbon nanotubes and nanohorn hybrids by arc discharge technique in open air atmosphere. Diamond Relat. Mater. 55, 12–15 (2015). https://doi.org/10.1016/j.diamond.2015.02.004

    Article  Google Scholar 

  27. Zhao, J., Wei, L., Yang, Z., Zhang, Y.: Continuous and low-cost synthesis of high-quality multi-walled carbon nanotubes by arc discharge in air. Phys. E 44, 1639–1643 (2012). https://doi.org/10.1016/j.physe.2012.04.010

    Article  Google Scholar 

  28. Arora, N., Sharma, N.N.: Arc discharge synthesis of carbon nanotubes: comprehensive review. Diamond Relat. Mater. 50, 135–150 (2014). https://doi.org/10.1016/j.diamond.2014.10.001

    Article  Google Scholar 

  29. Chiu, S.C., Huang, C.W., Li, Y.Y.: SiC nanowires by a catalyst-free arc-discharge method. J. Phys. Chem. C 111, 10294–10297 (2007). https://doi.org/10.1021/jp0687192

    Article  Google Scholar 

  30. Liang, C.H., Meng, G.W., Zhang, L.D., Wu, Y.C., Cui, Z.: Large-scale synthesis of b-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles. Chem. Phys. Lett. 329, 323–328 (2000). https://doi.org/10.1016/S0009-2614(00)01023-X

    Article  Google Scholar 

  31. Yang, W., Araki, H., Thaveethavorn, S.H., Suzuki, T.: Noda, in situ synthesis and characterization of pure SiC nanowires on silicon wafer. Appl. Surf. Sci. 241, 236–240 (2005). https://doi.org/10.1016/j.apsusc.2004.09.039

    Article  Google Scholar 

  32. Hao, Y.J., **, G.Q., Han, X.D., Guo, X.Y.: Synthesis and characterization of bamboo-like SiC nanofibers. Mater. Lett. 60, 1334–1337 (2006). https://doi.org/10.1016/j.matlet.2005.10.115

    Article  Google Scholar 

  33. Eom, J.H., Kim, Y.W., Song, I.H.: Effects of the initial-SiC content on the microstructure, mechanical properties, and permeability of macroporous silicon carbide ceramics. J. Eur. Ceram. Soc. 32, 1283–1290 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.040

    Article  Google Scholar 

Download references

Funding

Synthesis of the studied samples was carried out with the financial support of Tomsk Polytechnic University development program. The physicochemical characteristics of the studied samples was studied with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the project No. 075-00268-20-02 (ID: 07180-2020-0040).

Author information

Authors and Affiliations

Authors

Contributions

AYP—direct current plasma arc processing of samples, writing—original draft. KBL—wood waste biochar samples acquisition and characterization. APK—XRD data acquisition and interpretation, plasma arc processing data analysis. TYY—SEM and EDS results acquisition and interpretation. SAY—DTA-TG data acquisition and interpretation. VEG—idea and design of article, general supervision. KVS—writing. AAG—review and editing.

Corresponding author

Correspondence to Kirill B. Larionov.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict or competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (GIF 3204 kb)

Supplementary file2 (GIF 3086 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pak, A.Y., Larionov, K.B., Korchagina, A.P. et al. Advanced Arc Plasma Synthesis of Biomorphic Silicon Carbide Using Charcoal and Silicon Dioxide in Air. Waste Biomass Valor 13, 107–115 (2022). https://doi.org/10.1007/s12649-021-01517-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01517-8

Keywords

Navigation