Log in

Co-digestion Potential of Industrial Sludges with Municipal Sludge

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Anaerobic digestion found limited use in sludges from industrial wastewater treatment plants (WWTPs). So, it is of interest to assess the biodegradability and co-digestion performance of industrial sludges of biological origin alone and when mixed with municipal sludge. In this study, sludge from two different organized industrial districts (OIDs) and textile industry WWTPs are individually mixed with municipal sludge with and without ultrasound pretreatment to investigate their energy production potential and digestibility using biochemical methane potential tests. Sludges were used at different mass ratios in reactors with F/M ratio of 1. During operation, biogas amount and methane percentage were measured. Before and after reactor operation, total solids (TS), volatile solids (VS), chemical oxygen demand (COD) and pH were measured as performance indicators of digestion. Methane production potential was highest in reactors containing only municipal sludge and lowest containing only industrial sludge. The specific methane production normalized with COD removed for OID I, OID II and textile sludges were 0.13 L/g, 0.11 L/g and 0.11 L/g, respectively; whereas average specific methane production for municipal sludge was 0.31 L/g. COD, TS and VS reductions were lower in industrial sludges compared to domestic sludge. The co-digestion reactors with mixed industrial and municipal sludge performed in accordance with the proportion of two sludges. Ultrasonication improved the digestion performance. Although adding industrial sludge reduced the observed biogas amount to lower than that expected, results show that it is possible to co-digest some industrial sludges with municipal sludge in closely coordinated additions (about < 20%).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vesilind, P.A., Hartman, G.C., Skene, E.T.: Sludge Management and Disposal for the Practicing Engineer. Lewis Publishers Inc, Michigan (1985)

    Google Scholar 

  2. Sanin, F.D., Clarkson, W.W., Vesilind, P.A.: Sludge Engineering: The Treatment and Disposal of Wastewater Sludges. DEStech Publications Inc, Lancaster (2011)

    Google Scholar 

  3. Amanatidou, E., Samiotis, G., Trikoilidou, E., Tzelios, D., Michailidis, A.: Influence of wastewater treatment plants’ operational conditions on activated sludge microbiological and morphological characteristics. Environ. Technol. 37(2), 265–278 (2015). https://doi.org/10.1080/09593330.2015.1068379

    Article  Google Scholar 

  4. Tchobanoglous, G., Burton, F.L., Stensel, H.D.: Metcalf & Eddy Inc: Wastewater Engineering: Treatment and Reuse. McGraw-Hill Education, New York (2013)

    Google Scholar 

  5. Andreoli, C. V., Sperling, M. V.: Sludge treatment and disposal. In: Biological Wastewater Treatment. IWA Publishing, London (2007)

  6. Gude, V.G.: Energy positive wastewater treatment and sludge management. Edorium J. Waste. Manag. 1, 10–15 (2015)

    Google Scholar 

  7. Kelessidis, A., Stasinakis, A.S.: Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 32(6), 1186–1195 (2012). https://doi.org/10.1016/j.wasman.2012.01.012

    Article  Google Scholar 

  8. El-Mashad, H.M., Zhang, R.: Biogas production from co-digestion of dairy manure and food waste. Biores. Technol. 101(11), 4021–4028 (2010). https://doi.org/10.1016/j.biortech.2010.01.027

    Article  Google Scholar 

  9. Kim, M., Gomec, C.Y., Ahn, Y., Speece, R.E.: Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environ. Technol. 24(9), 1183–1190 (2003). https://doi.org/10.1080/09593330309385659

    Article  Google Scholar 

  10. Esposito, G., Frunzo, L., Giordano, A., Liotta, F., Panico, A., Pirozzi, F.: Anaerobic co-digestion of organic wastes. Rev. Environ. Sci. Bio/Technol. (2012). https://doi.org/10.1007/s11157-012-9277-8

    Article  Google Scholar 

  11. Moody, L., Burns, R., Wu-haan, W., Spajic, R.: Use of biochemical methane potential (BMP) assays for predicting and enhancing anaerobic digester performance. In: 44th Croatian & 4th International Symposium on Agriculture. pp. 930–934. https://lib.dr.iastate.edu/abe_eng_conf/466 (2009). Accessed 15 June 2019

  12. Benito-Mora, C., Alonso-Contreras, A.J., Garvi, D., Pozo-Morales, L., Morón, M.C., Lebrato, J.: Olive mill industrial waste as co-substrate in anaerobic digestion with aim at its energetic exploitation. Intl. J. Environ. Res. 12(5), 713–723 (2018). https://doi.org/10.1007/s41742-018-0123-x

    Article  Google Scholar 

  13. Liu, X., Han, Z., Yang, J., Ye, T., Yang, F., Wu, N., Bao, Z.: Review of enhanced processes for anaerobic digestion treatment of sewage sludge. IOP Conf. Series (2018). https://doi.org/10.1088/1755-1315/113/1/012039

    Article  Google Scholar 

  14. Zhang, H. J.: Sludge treatment to increase biogas production. Trita-LWR Degree Project 10–20. https://www.sjostadsverket.se/download/18.79cc091012c369366d9800017089/1350483757500/LWR_EX_10_20.pdf (2010). Accessed 28 May 2019

  15. Tyagi, V.K., Lo, S., Appels, L., Dewil, R.: Ultrasonic treatment of waste sludge: a review on mechanisms and applications. Crit. Rev. Environ. Sci. Technol. 44(11), 1220–1288 (2014). https://doi.org/10.1080/10643389.2013.763587

    Article  Google Scholar 

  16. Li, D., Tan, Y., Zhou, Y., Pathak, S., Sendjaja, A.Y., Majid, M.A., Chowdhury, P., Ng, W.J.: Comparative study of low-energy ultrasonic and alkaline treatment on biosludge from secondary industrial wastewater treatment. Environ. Technol. 36(17), 2239–2248 (2015). https://doi.org/10.1080/09593330.2015.1025103

    Article  Google Scholar 

  17. Carrère, H., Dumas, C., Battimelli, A., Batstone, D., Delgenès, J., Steyer, J., Ferrer, I.: Pretreatment methods to improve sludge anaerobic degradability: a review. J. Hazard. Mater. 183(1–3), 1–15 (2010). https://doi.org/10.1016/j.jhazmat.2010.06.129

    Article  Google Scholar 

  18. Khanal, S.K., Grewell, D., Sung, S., Leeuwen, J.V.: Ultrasound applications in wastewater sludge pretreatment: a review. Crit. Rev. Environ. Sci. Technol. 37, 277–313 (2007)

    Article  Google Scholar 

  19. Cunningham, J.: Comparing municipal to industrial wastewater treatment. New York Water Environment Association, Inc. https://nywea.org/clearwaters/13-1-spring/6.pdf (2013). Accessed 12 June 2019

  20. Cieślik, B.M., Namieśnik, J., Konieczka, P.: Review of sewage sludge management: standards, regulations and analytical methods. J. Clean. Prod. 90, 1–15 (2015). https://doi.org/10.1016/j.jclepro.2014.11.031

    Article  Google Scholar 

  21. Brown, D., Li, Y.: Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Biores. Technol. 127, 275–280 (2013)

    Article  Google Scholar 

  22. Mata-Alvarez, J., Macé, S., Llabrés, P.: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Biores. Technol. 74(1), 3–16 (2000). https://doi.org/10.1016/s0960-8524(00)00023-7

    Article  Google Scholar 

  23. Wang, X., Yang, G., Feng, Y., Ren, G., Han, X.: Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic. Co-digestion of dairy, chicken manure and wheat straw. Biores. Technol. 120, 78–83 (2012). https://doi.org/10.1016/j.biortech.2012.06.058

    Article  Google Scholar 

  24. Janajreh, I., Alshehi, A., Elagroudy, S.: Anaerobic co-digestion of petroleum hydrocarbon waste and wastewater treatment sludge. Int. J. Hydrogen Energy 45(20), 11538–11549 (2020). https://doi.org/10.1016/j.ijhydene.2018.05.100

    Article  Google Scholar 

  25. Rulkens, W.: Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energy Fuels 22(1), 9–15 (2008). https://doi.org/10.1021/ef700267m

    Article  Google Scholar 

  26. Murto, M., Björnsson, L., Mattiasson, B.: Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J. Environ. Manag. 70(2), 101–107 (2004). https://doi.org/10.1016/j.jenvman.2003.11.001

    Article  Google Scholar 

  27. Zhang, C., **ao, G., Peng, L., Su, H., Tan, T.: The anaerobic Co-digestion of food waste and cattle manure. Biores. Technol. 129, 170–176 (2013). https://doi.org/10.1016/j.biortech.2012.10.138

    Article  Google Scholar 

  28. Grosser, A., Neczaj, E.: Enhancement of biogas production from sewage sludge by addition of grease trap sludge. Energy Convers. Manag. 125, 301–308 (2016). https://doi.org/10.1016/j.enconman.2016.05.089

    Article  Google Scholar 

  29. Yang, G., Zhang, G., Wang, H.: Current state of sludge production, management, treatment and disposal in China. Water Res. 78, 60–73 (2015). https://doi.org/10.1016/j.watres.2015.04.002

    Article  Google Scholar 

  30. Mata-Alvarez, J., Dosta, J., Romero-Güiza, M., Fonoll, X., Peces, M., Astals, S.: A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 36, 412–427 (2014). https://doi.org/10.1016/j.rser.2014.04.039

    Article  Google Scholar 

  31. Almomani, F.: Prediction of biogas production from chemically treated co-digested agricultural waste using artificial neural network. Fuel 280, 118573 (2020). https://doi.org/10.1016/j.fuel.2020.118573

    Article  Google Scholar 

  32. Atelge, M.R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D.D., Chang, S.W., Atabani, A.E., Al-Muhtaseb, A.H., Unalan, S.: Biogas production from organic waste: recent progress and perspectives. Waste Biomass Valoriz. 11(3), 1019–1040 (2018). https://doi.org/10.1007/s12649-018-00546-0Skd

    Article  Google Scholar 

  33. Panizio, R.M., Calado, L.F.D., Lourinho, G., de Brito, P.S.D., Mees, J.B.: Potential of biogas production in anaerobic co-digestion of Opuntia ficus-indica and slaughterhouse wastes. Waste Biomass Valoriz. 11(9), 4639–4647 (2020). https://doi.org/10.1007/s12649-019-00835-2

    Article  Google Scholar 

  34. Apul, O.G., Sanin, F.D.: Ultrasonic pretreatment and subsequent anaerobic digestion under different operational conditions. Biores. Technol. 101(23), 8984–8992 (2010). https://doi.org/10.1016/j.biortech.2010.06.128

    Article  Google Scholar 

  35. Köksoy, G.T., Sanin, F.D.: Effect of digester F/M ratio on gas production and sludge minimization of ultrasonically treated sludge. Water Sci. Technol. 62(7), 1510–1517 (2010). https://doi.org/10.2166/wst.2010.447

    Article  Google Scholar 

  36. Çelebi, E.B., Aksoy, A., Sanin, F.D.: Effects of anaerobic digestion enhanced by ultrasound pretreatment on the fuel properties of municipal sludge. Environ. Sci. Pollut. Res. 27(14), 17350–17358 (2020). https://doi.org/10.1007/s11356-020-08230-4

    Article  Google Scholar 

  37. APHA, AWWA, WEF.: Standard Methods for the Examination of Water and Wastewater. Washington, DC.: American Public Health Association, American Water Works Association, Water Environment Federation. (21st ed.) (2012)

  38. Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Biores. Technol. 99, 4044–4406 (2008)

    Article  Google Scholar 

  39. Ahammad, S., Yakubu, A., Rodriguez, D., Dolfing, J., Graham, D.: Source separation increases methane yields for waste-to-energy applications in the personal care product industry. Chem. Eng. J. 244, 195–201 (2014). https://doi.org/10.1016/j.cej.2014.01.058

    Article  Google Scholar 

  40. Willmott, N., Guthrie, J., Nelson, G.: The biotechnology approach to colour removal from textile effluent. J. Soc. Dyers Colour 114(2), 38–41 (2008). https://doi.org/10.1111/j.1478-4408.1998.tb01943.x

    Article  Google Scholar 

  41. Bougrier, C., Delgenès, J., Carrère, H.: Combination of thermal treatments and anaerobic digestion to reduce sewage sludge quantity and improve biogas yield. Process Saf. Environ. Prot. 84(4), 280–284 (2006). https://doi.org/10.1205/psep.05162

    Article  Google Scholar 

  42. De la Rubia, M.A., Perez, M., Romero, L.I., Sales, D.: Anaerobic mesophilic and thermophilic municipal sludge digestion. Chem. Biochem. Eng. Q. 16(2), 119–124 (2002)

    Google Scholar 

  43. Speece, R.E.: Anaerobic Biotechnology for Industrial Wastewaters. Archaae Press, Nashville (1996)

    Google Scholar 

  44. Lundin, M., Olofsson, M., Pettersson, G., Zetterlund, H.: Environmental and economic assessment of sewage sludge handling options. Resour. Conserv. Recycl. 41(4), 255–278 (2004). https://doi.org/10.1016/j.resconrec.2003.10.006

    Article  Google Scholar 

  45. Werther, J., Ogada, T.: Sewage sludge combustion. Prog. Energy Combust. Sci. 25(1), 55–116 (1999). https://doi.org/10.1016/s0360-1285(98)00020-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dilek Sanin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksu Bahçeci, H., Sanin, S.L. & Sanin, F.D. Co-digestion Potential of Industrial Sludges with Municipal Sludge. Waste Biomass Valor 12, 5437–5449 (2021). https://doi.org/10.1007/s12649-021-01409-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01409-x

Keywords

Navigation