Log in

Eucalyptus globulus Stumps Bark: Chemical and Anatomical Characterization Under a Valorisation Perspective

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The chemical and anatomical properties of Eucalyptus globulus stumps barks collected from fresh stumps (SB) and from industrial stumps bark piles (ISB) were determined. The stump bark showed similar anatomical structure to that of the stem bark, however with abundant prismatic crystals in the axial parenchyma cells. Stumps barks (ISB) presented a great amount of ashes (19.2%) that were incorporated during forest and mill processing, and lower content in extractives (4.1%), lignin (18.5%) and polysaccharides (48.5%). The non-polar (DCM) extracts were composed essentially by triterpenoids, fatty acids (C8 to C28), phytosterols (sterols and steroid ketones) and fatty alcohols (C15 to C28). The polar extracts (ethanol and water) were rich in phenolic compounds, condensed tannins and flavonoids, with higher values for the ethanol extracts and for SB. The antioxidant activity of ethanol extracts from SB was higher although only moderate (IC50 6.8). The lignin monomeric composition (H:G:S) was similar in SB (1:12:45) and in ISB (1:9:26). Sugar-derived compounds formed by Py-GC/MS included more low molecular compounds in ISB than in SB (45.5% vs.20.3%) indicative of a more degraded structure.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pereira, H., Miranda, I., Gominho, J., Tavares, J., Quilhó, T., Graça, J., Rodrigues, J., Shatalov, A., Knapic, S.: Qualidade tecnológica do eucalipto (Eucalyptus globulus). Centro de Estudos Florestais. ISA-UTL, Lisboa. In Portuguese (2010)

  2. Soares, P., Tomé, M.: Biomass expansion factors for Eucalyptus globulus stands in Portugal. For. Syst. 21, 141 (2012). https://doi.org/10.5424/fs/2112211-12086

    Article  Google Scholar 

  3. Gominho, J., Lourenço, A., Miranda, I., Pereira, H.: Chemical and fuel properties of stumps biomass from Eucalyptus globulus plantations. Ind. Crops Prod. 39, 12–16 (2012). https://doi.org/10.1016/j.indcrop.2012.01.026

    Article  Google Scholar 

  4. Pinto, F., Gominho, J., André, R.N., Gonçalves, D., Miranda, M., Varela, F., Neves, D., Santos, J., Lourenço, A., Pereira, H.: Improvement of gasification performance of Eucalyptus globulus stumps with torrefaction and densification pre-treatments. Fuel 206, 289–299 (2017). https://doi.org/10.1016/j.fuel.2017.06.008

    Article  Google Scholar 

  5. Gominho, J., Costa, R., Lourenço, A., Neiva, D.M., Pereira, H.: The effect of different pre-treatments to improve delignification of eucalypt stumps in a biorefinery context. Bioresour. Technol. Rep. 6, 89–95 (2019). https://doi.org/10.1016/j.biteb.2019.02.004

    Article  Google Scholar 

  6. Quilhó, T., Pereira, H., Richter, H.: Variability of bark structure in plantation-grown Eucalyptus globulus. IAWA J. 20, 171–180 (1999)

    Article  Google Scholar 

  7. Quilhó, T., Pereira, H., Richter, H.: Within-tree variation in phloem cell dimensions and proportions in Eucalyptus globulus. IAWA J. 21, 31–40 (2000)

    Article  Google Scholar 

  8. Miranda, I., Gominho, J., Mirra, I., Pereira, H.: Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Ind. Crops Prod. 41, 299–305 (2013). https://doi.org/10.1016/j.indcrop.2012.04.024

    Article  Google Scholar 

  9. Neiva, D.M., Gominho, J., Pereira, H.: Modeling and optimization of Eucalyptus globulus bark and wood delignification using response surface methodology. BioResources 9, 2907–2921 (2014). https://doi.org/10.15376/biores.9.2.2907-2921

    Article  Google Scholar 

  10. Freire, C.S.R., Silvestre, A.J.D., Pereira, C.C.L., Neto, C.P., Cavaleiro, J.A.S.: New lipophilic components of pitch deposits from an Eucalyptus globulus ECF bleached kraft pulp mill. J. Wood Chem. Technol. 22, 55–66 (2002). https://doi.org/10.1081/WCT-120004434

    Article  Google Scholar 

  11. Domingues, R.M.A., Sousa, G.D.A., Silva, C.M.M., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P.: High value triterpenic compounds from the outer barks of several Eucalyptus species cultivated in Brazil and in Portugal. Ind. Crops Prod. 33, 158–164 (2011). https://doi.org/10.1016/j.indcrop.2010.10.006

    Article  Google Scholar 

  12. Domingues, R.M.A., Patinha, D.S.J., Sousa, G.D.A., Villaverde, J.J., Silva, C.M., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P.: Eucalyptus biomass residues from agro-forest and pul** industries as sources of high-value triterpenic compounds. Cell. Chem. Technol. 45, 475–481 (2011)

    Google Scholar 

  13. Le Normand, M., Moriana, R., Ek, M.: The bark biorefinery: a side-stream of the forest industry converted into nanocomposites with high oxygen-barrier properties. Cellulose 21, 4583–4594 (2014). https://doi.org/10.1007/s10570-014-0423-z

    Article  Google Scholar 

  14. Vangeel, T., Renders, T., Van Aelst, K., Cooreman, E., Van den Bosch, S., Van den Bossche, G., Koelewijn, S.-F., Courtin, C.M., Sels, B.F.: Reductive catalytic fractionation of black locust bark. Green Chem. 21, 5841–5851 (2019). https://doi.org/10.1039/C9GC02139F

    Article  Google Scholar 

  15. Kumaniaev, I., Samec, J.S.M.M.: Valorization of Quercus suber Bark toward hydrocarbon bio-oil and 4-ethylguaiacol. ACS Sustain. Chem. Eng. 6, 5737–5742 (2018). https://doi.org/10.1021/acssuschemeng.8b00537

    Article  Google Scholar 

  16. Angyalossy, V., Pace, M.R., Evert, R.F., Marcati, C.R., Oskolski, A.A., Terrazas, T., Kotina, E., Lens, F., Mazzoni-Viveiros, S.C., Angeles, G., Machado, S.R., Crivellaro, A., Rao, K.S., Junikka, L., Nikolaeva, N., Baas, P.: IAWA list of microscopic bark features. IAWA J. 37, 517–615 (2016). https://doi.org/10.1163/22941932-20160151

    Article  Google Scholar 

  17. Rowell, R.M.: Handbook of Wood Chemistry and Wood Composites. CRC Press - Taylor & Francis, London (2013)

    Google Scholar 

  18. Ferreira, J.P.A.A., Miranda, I., Gominho, J., Pereira, H.: Selective fractioning of Pseudotsuga menziesii bark and chemical characterization in view of an integrated valorization. Ind. Crops Prod. 74, 998–1007 (2015). https://doi.org/10.1016/j.indcrop.2015.05.065

    Article  Google Scholar 

  19. Miranda, I., Lima, L., Quilhó, T., Knapic, S., Pereira, H.: The bark of Eucalyptus sideroxylon as a source of phenolic extracts with anti-oxidant properties. Ind. Crops Prod. 82, 81–87 (2016). https://doi.org/10.1016/j.indcrop.2015.12.003

    Article  Google Scholar 

  20. Scherer, R., Godoy, H.T.: Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 112, 654–658 (2009). https://doi.org/10.1016/j.foodchem.2008.06.026

    Article  Google Scholar 

  21. Faix, O., Meier, D., Fortmann, I.: Thermal degradation products of wood A collection of electron-impact (EI) mass spectra of monomeric lignin derived products. Holz als Roh-und Werkstoff 48, 351 (1990). https://doi.org/10.1007/BF02626519

    Article  Google Scholar 

  22. Ralph, J., Hatfield, R.D.: Pyrolysis-GC-MS characterization of forage materials. J. Agric. Food Chem. 39, 1426–1437 (1991). https://doi.org/10.1021/jf00008a014

    Article  Google Scholar 

  23. Jorge, F., Quilhó, T., Pereira, H.: Variability of fibre length in wood and bark in Eucalyptus globulus. IAWA J. 21, 41–48 (2000)

    Article  Google Scholar 

  24. Evert, R.F., Eichhorn, S.E.: Periderm. Esau’s Plant Anatomy, Meristems, Cells and Tissues of the Plant Body: Their Structure, Function and Development, p. 601. Wiley, New Jersey (2006)

    Chapter  Google Scholar 

  25. Tippett, J.T., O’Brien, T.P.: The structure of Eucalypt roots. Aust. J. Bot. 24, 619–632 (1976). https://doi.org/10.1071/BT9760619

    Article  Google Scholar 

  26. Neiva, D.M., Gominho, J., Fernandes, L., Lourenço, A., Chemetova, C., Simões, R.M.S.S., Pereira, H.: The potential of hydrothermally pretreated industrial barks from E. globulus as a feedstock for pulp production. J. Wood Chem. Technol. 36, 383–392 (2016). https://doi.org/10.1080/02773813.2016.1184280

    Article  Google Scholar 

  27. Miranda, I., Gominho, J., Pereira, H.: Incorporation of bark and tops in Eucalyptus globulus wood pul**. BioResources 7, 4350–4361 (2012)

    Google Scholar 

  28. Neiva, D.M., Araújo, S., Gominho, J., de Carneiro, A., Pereira, H.: Potential of Eucalyptus globulus industrial bark as a biorefinery feedstock: chemical and fuel characterization. Ind. Crops Prod. 123, 262–270 (2018). https://doi.org/10.1016/J.INDCROP.2018.06.070

    Article  Google Scholar 

  29. Gutiérrez, A., del Río, J.C., González-Vila, F.J., Romero, J., del Ŕio, J.C., González-Vila, F.J., Romero, J.: Variation in the composition of wood extractives from Eucalyptus globulus during seasoning. J. Wood Chem. Technol. 18, 439–446 (1998). https://doi.org/10.1080/02773819809349591

    Article  Google Scholar 

  30. Domingues, R.M.A., de Melo, M.M.R., Neto, C.P., Silvestre, A.J.D., Silva, C.M.: Measurement and modeling of supercritical fluid extraction curves of Eucalyptus globulus bark: influence of the operating conditions upon yields and extract composition. J. Supercrit. Fluids 72, 176–185 (2012). https://doi.org/10.1016/j.supflu.2012.08.010

    Article  Google Scholar 

  31. Thimmappa, R., Geisler, K., Louveau, T., O’Maille, P., Osbourn, A.: Triterpene biosynthesis in plants. Annu. Rev. Plant Biol. 65, 225–257 (2014). https://doi.org/10.1146/annurev-arplant-050312-120229

    Article  Google Scholar 

  32. Santos, S.A.O., Freire, C.S.R., Domingues, M.R.M., Silvestre, A.J.D., Neto, C.P.: Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. Bark by high-performance liquid chromatography-mass spectrometry. J. Agric. Food Chem. 59, 9386–9393 (2011). https://doi.org/10.1021/jf201801q

    Article  Google Scholar 

  33. Patinha, D.J.S., Domingues, R.M.A., Villaverde, J.J., Silva, A.M.S., Silva, C.M., Freire, C.S.R., Neto, C.P., Silvestre, A.J.D.: Lipophilic extractives from the bark of Eucalyptus grandis x globulus, a rich source of methyl morolate: Selective extraction with supercritical CO2. Ind. Crops Prod. 43, 340–348 (2013). https://doi.org/10.1016/j.indcrop.2012.06.056

    Article  Google Scholar 

  34. Nes, W.D.: Biosynthesis of cholesterol and other sterols. Chem. Rev. 111, 6423–6451 (2011). https://doi.org/10.1021/cr200021m

    Article  Google Scholar 

  35. Luís, Â., Neiva, D., Pereira, H., Gominho, J., Domingues, F., Duarte, A.: Stumps of Eucalyptus globulus as a source of antioxidant and antimicrobial polyphenols. Molecules 19, 16428–16446 (2014). https://doi.org/10.3390/molecules191016428

    Article  Google Scholar 

  36. Lima, L., Miranda, I., Knapic, S., Quilhó, T., Pereira, H.: Chemical and anatomical characterization, and antioxidant properties of barks from 11 Eucalyptus species. Eur. J. Wood Wood Prod. 76, 783–792 (2018). https://doi.org/10.1007/s00107-017-1247-y

    Article  Google Scholar 

  37. Santos, S.A.O., Villaverde, J.J., Silva, C.M., Neto, C.P., Silvestre, A.J.D.: Supercritical fluid extraction of phenolic compounds from Eucalyptus globulus Labill bark. J. Supercrit. Fluids 71, 71–79 (2012). https://doi.org/10.1016/j.supflu.2012.07.004

    Article  Google Scholar 

  38. Santos, S.A.O., Villaverde, J.J., Freire, C.S.R., Domingues, M.R.M., Neto, C.P., Silvestre, A.J.D.: Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis×E. urophylla) and E. maidenii bark extracts. Ind. Crops Prod. 39, 120–127 (2012). https://doi.org/10.1016/j.indcrop.2012.02.003

    Article  Google Scholar 

  39. Costa, C.A.E.E., Pinto, P.C.R., Rodrigues, A.E.: Evaluation of chemical processing impact on E. globulus wood lignin and comparison with bark lignin. Ind. Crops Prod. 61, 479–491 (2014). https://doi.org/10.1016/j.indcrop.2014.07.045

    Article  Google Scholar 

  40. Blanchette, R.A., Zabel, R.A., Morrell, J.J.: Wood microbiology: decay and its prevention. Mycologia 85, 874 (1993). https://doi.org/10.2307/3760624

    Article  Google Scholar 

  41. Mali, T., Mäki, M., Hellén, H., Heinonsalo, J., Bäck, J., Lundell, T.: Decomposition of spruce wood and release of volatile organic compounds depend on decay type, fungal interactions and enzyme production patterns. FEMS Microbiol. Ecol. (2019). https://doi.org/10.1093/femsec/fiz135

    Article  Google Scholar 

  42. Choi, S.S., Kim, M.C., Kim, Y.K.: Influence of silica on formation of levoglucosan from carbohydrates by pyrolysis. J. Anal. Appl. Pyrolysis 90, 56–62 (2011). https://doi.org/10.1016/j.jaap.2010.10.009

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support provided by Fundação para a Ciência e a Tecnologia (FCT) to the Forest Research Centre (UIDB/00239/2020), and to Ana Lourenço through a research contract (DL 57/2016/CP1382/CT0007). The raw material was provided by ALTRI-Celtejo.

Author information

Authors and Affiliations

Authors

Contributions

JG—conceived the study and performed the GC–MS studies. RAC—performed the chemical analysis. AL—performed the Py-GC/MS analysis. TQ—performed the anatomical observations. HP—reviewed the manuscript. All authors contributed to writing the manuscript and approved the final submission.

Corresponding author

Correspondence to Jorge Gominho.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gominho, J., Costa, R.A., Lourenço, A. et al. Eucalyptus globulus Stumps Bark: Chemical and Anatomical Characterization Under a Valorisation Perspective. Waste Biomass Valor 12, 1253–1265 (2021). https://doi.org/10.1007/s12649-020-01098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01098-y

Keywords

Navigation