Log in

Aqueous Ammonia Soaking of Wheat Straw at Ambient Temperature for Enhancing the Methane Yield: Process Optimization by Response Surface Methodology

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Aqueous ammonia soaking (AAS) at ambient temperature was applied to wheat straw under different conditions in order to maximize the CH4 yield through mesophilic anaerobic digestion. The effects of the NH3 concentration, duration of AAS and solid-to-liquid ratio were studied on the resulting CH4 yield and the solubilization degree of the pretreated wheat straw. A strong interaction among the NH3 concentration and the duration of AAS was observed. The optimal conditions found were 18% w/w NH3, 7 days of duration and 50 g straw/L reagent, leading to a 43% increase of the CH4 yield in 17 days of digestion. Compositional analysis of the optimally-treated wheat straw revealed that a significant solubilization of hemicellulose took place during AAS together with a moderate lignin removal (9%).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. The European Parliament and the Council of the European Union: Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009. Off J Eur Union 140, 16–62 (2009)

  2. Scarlat, N., Dallemand, J., Monforti-Ferrario, F., Nita, V.: The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ. Dev. 15, 3–34 (2015)

    Google Scholar 

  3. Scarlat, N., Martinov, M., Dallemand, J.-F.: Assessment of the availability of agricultural crop residues in the European Union: potential and limitations for bioenergy use. Waste Manag. 30, 1889–1897 (2010)

    Google Scholar 

  4. Croce, S., Wei, Q., D’Imporzano, G., Dong, R., Adani, F.: Anaerobic digestion of straw and corn stover: the effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol. Adv. 34, 1289–1304 (2016)

    Google Scholar 

  5. Zhang, R. and Jenkins, B.M.: Commercial uses of straw., Agricultural mechanization and automation, II. In: Encyclopedia of Life Support Systems (EOLSS), pp. 308–341, UNESCO, Paris, University College Dublin, Ireland (2009)

  6. Hills, D.J., Roberts, D.W.: Anaerobic digestion of dairy manure and field crop residues. Agric. Wastes 3, 179–189 (1981)

    Google Scholar 

  7. Wang, X., Yang, G., Feng, Y., Ren, G., Han, X.: Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour. Technol. 120, 78–83 (2012)

    Google Scholar 

  8. Krishania, M., Vijay, V.K., Chandra, R.: Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay. Energy 57, 359–367 (2013)

    Google Scholar 

  9. Awais, M., Alvarado-Morales, M., Tsapekos, P., Gulfraz, M., Angelidaki, I.: Methane production and kinetic modeling for co-digestion of manure with lignocellulosic residues. Energy Fuels 30, 10516–10523 (2016)

    Google Scholar 

  10. Pavlostathis, S.G., Gossett, J.M.: Alkaline treatment of wheat straw for increasing anaerobic biodegradability. Biotechnol. Bioeng. XXVII, 334–344 (1985)

    Google Scholar 

  11. Hashimoto, A.G.: Pretreatment of wheat straw for fermentation to methane. Biotechnol. Bioeng. XXVIII, 1857–1866 (1986)

    Google Scholar 

  12. Alvarado-Morales, M., Tsapekos, P., Awais, M., Gulfraz, M., Angelidaki, I.: TiO2/UV based photocatalytic pretreatment of wheat straw for biogas production. Anaerobe 46, 155–161 (2016)

    Google Scholar 

  13. Møller, H.B., Sommer, S.G., Ahring, B.K.: Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy 26, 485–495 (2004)

    Google Scholar 

  14. Mosier, N.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)

    Google Scholar 

  15. Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009)

    Google Scholar 

  16. Taherzadeh, M.J., Karimi, K.: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651 (2008)

    Google Scholar 

  17. Lymperatou, A., Gavala, H.N., Esbensen, K.H., Skiadas, I.V.: AMMONOX: ammonia for enhancing biogas yield and reducing NOx—analysis of effects of aqueous ammonia soaking on manure fibers. Waste Biomass Valoriz. 6, 449–457 (2015)

    Google Scholar 

  18. Kim, J.S., Lee, Y.Y., Kim, T.H.: A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 199, 42–48 (2016)

    Google Scholar 

  19. Himmelsbach, J.N., Isci, A., Raman, D.R., Anex, R.P.: Design testing pilot aqueous ammonia soaking biomass pretreatment system. Appl. Eng. Agric. 25, 953–959 (2009)

    Google Scholar 

  20. Song, Z., Yang, G., Guo, Y., Zhang, T.: Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources 7, 3223–3236 (2012)

    Google Scholar 

  21. Jurado, E., Skiadas, I.V., Gavala, H.N.: Enhanced methane productivity from manure fibers by aqueous ammonia soaking pretreatment. Appl. Energy 109, 104–111 (2013)

    Google Scholar 

  22. Jurado, E., Gavala, H.N., Skiadas, I.V.: Enhancement of methane yield from wheat straw, miscanthus and willow using aqueous ammonia soaking. Environ. Technol. 34, 2069–2075 (2013)

    Google Scholar 

  23. Mirtsou-Xanthopoulou, C., Jurado, E., Skiadas, I.V., Gavala, H.N.: Effect of aqueous ammonia soaking on the methane yield and composition of digested manure fibers applying different ammonia concentrations and treatment durations. Energies 7, 4157–4168 (2014)

    Google Scholar 

  24. Yang, D., Pang, Y., Yuan, H., Chen, S., Ma, J., Yu, L., Li, X.: Enhancing biogas production from anaerobically digested wheat straw through ammonia pretreatment. Chin. J. Chem. Eng. 22, 576–582 (2014)

    Google Scholar 

  25. Song, Z., GaiheYang, Liu, X., Yan, Z., Yuan, Y., Liao, Y.: Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion. PLoS ONE 9, e93801 (2014)

    Google Scholar 

  26. Li, Y., Merrettig-Bruns, U., Strauch, S., Kabasci, S., Chen, H.: Optimization of ammonia pretreatment of wheat straw for biogas production. J. Chem. Technol. Biotechnol. 90, 130–138 (2015)

    Google Scholar 

  27. Antonopoulou, G., Gavala, H.N., Skiadas, I.V., Lyberatos, G.: The effect of aqueous ammonia soaking pretreatment on methane generation using different lignocellulosic biomasses. Waste Biomass Valoriz. 6, 281–291 (2015)

    Google Scholar 

  28. Lymperatou, A., Gavala, H.N., Skiadas, I.V.: Optimization of aqueous ammonia soaking of manure fibers by response surface methodology for unlocking the methane potential of swine manure. Bioresour. Technol. 244, 509–516 (2017)

    Google Scholar 

  29. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., van Lier, J.B.: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59, 927–934 (2009)

    Google Scholar 

  30. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of extractives in biomass NREL/TP-510-42619. National Renewable Energy Laboratory (NREL), Colorado (2008)

    Google Scholar 

  31. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass NREL/TP-510-42618. National Renewable Energy Laboratory (NREL), Colorado (2011)

    Google Scholar 

  32. Hyman, D., Sluiter, A., Crocker, D., Johnson, D., Sluiter, J., Black, S., Scarlata, C.: Determination of acid soluble lignin concentration curve by UV-Vis spectroscopy NREL/TP-510-42617 (2008)

  33. Bjerre, A.B., Plöger, A., Simonsen, T., Woidemann, A., & Schmidt, A.S.: Quantification of solubilized hemicellulose from pretreated lignocellulose by acid hydrolysis and high-performance liquid chromatography. In: Forskningscenter Risoe. Risoe-R; No. 855(EN), Roskilde, Denmark (1996)

  34. APHA: Standard Methods for the Examination of Water and Wastewater, 21st ed.: American Public Health Association/American Water Works Association/Water Pollution Control Federation, Washington DC (2005)

  35. Barakat, A., Monlau, F., Steyer, J.P., Carrère, H.: Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresour. Technol. 104, 90–99 (2012)

    Google Scholar 

  36. Siddique, M.N.I., Wahid, Z.A.: Achievements and perspectives of anaerobic co-digestion: a review. J. Clean. Prod. 194, 359–371 (2018)

    Google Scholar 

  37. Ko, J.K., Bak, J.S., Jung, M.W., Lee, H.J., Choi, I.G., Kim, T.H., Kim, K.H.: Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour. Technol. 100, 4374–4380 (2009)

    Google Scholar 

  38. Kim, T.H., Lee, Y.Y.: Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Appl. Biochem. Biotechnol. 136–140, 81–92 (2007)

    Google Scholar 

  39. Li, X., Kim, T.H.: Low-liquid pretreatment of corn stover with aqueous ammonia. Bioresour. Technol. 102, 4779–4786 (2011)

    Google Scholar 

  40. Yoo, C.G., Nghiem, N.P., Hicks, K.B., Kim, T.H.: Maximum production of fermentable sugars from barley straw using optimized soaking in aqueous ammonia (SAA) pretreatment. Appl. Biochem. Biotechnol. 169, 2430–2441 (2013)

    Google Scholar 

  41. Li, X., Kim, T.H., Nghiem, N.P.: Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF). Bioresour. Technol. 101, 5910–5916 (2010)

    Google Scholar 

  42. Ferreira, L.C., Donoso-Bravo, A., Nilsen, P.J., Fdz-Polanco, F., Pérez-Elvira, S.I.: Influence of thermal pretreatment on the biochemical methane potential of wheat straw. Bioresour. Technol. 143, 251–257 (2013)

    Google Scholar 

  43. Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I.: Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 100, 2562–2568 (2009)

    Google Scholar 

  44. Bauer, A., Leonhartsberger, C., Bosch, P., Amon, B., Friedl, A., Amon, T.: Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean Technol. Environ. Policy 12, 153–161 (2010)

    Google Scholar 

  45. Chandra, R., Takeuchi, H., Hasegawa, T., Kumar, R.: Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy 43, 273–282 (2012)

    Google Scholar 

  46. Carrère, H., Antonopoulou, G., Affes, R., Passos, F., Battimelli, A., Lyberatos, G., Ferrer, Y.: Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour. Technol. 199, 386–397 (2016)

    Google Scholar 

  47. Tao, L., Aden, A., Elander, R.T., Pallapolu, V.R., Lee, Y.Y., Garlock, R.J., Balan, V., Dale, B.E., Kim, Y., Mosier, N.S., Ladisch, M.R., Falls, M., Holtzapple, M.T., Sierra, R., Shi, J., Ebrik, M.A., Redmond, T., Yang, B., Wyman, C.E., Hames, B., Thomas, S., Warner, R.E.: Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour. Technol. 102, 11105–11114 (2011)

    Google Scholar 

  48. Kim, T.H., Lee, Y.Y.: Pretreatment of corn stover by soaking in aqueous ammonia. Appl. Biochem. Biotechnol. 121–124, 1119–1132 (2005)

    Google Scholar 

  49. Du, B., Sharma, L.N., Becker, C., Chen, S.F., Mowery, R.A., van Walsum, G.P., Chambliss, C.K.: Effect of varying feedstock-pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol. Bioeng. 107, 430–440 (2010)

    Google Scholar 

  50. Chundawat, S.P.S., Vismeh, R., Sharma, L.N., Humpula, J.F., da Costa Sousa, L., Chambliss, C.K., Jones, A.D., Balan, V., Dale, B.E.: Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresour. Technol. 101, 8429–8438 (2010)

    Google Scholar 

  51. Kort, M.J.: Reactions of free sugars with aqueous ammonia. In: Tipson, R.S., Horton, D. (eds.) Advances in carbohydrate chemistry and biochemistry, vol. 25, pp. 311–349. Academic Press, Inc., New York (1970)

    Google Scholar 

  52. Balan, V., da Costa Sousa, L., Chundawat, S.P.S., Humpula, J., Dale, B.E.: Overview to ammonia pretreatments for lignocellulosic biorefineries. Dyn Biochem. Process Biotechnol. Mol. Biol. 6, 1–11 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Energinet.dk for the funding of the work presented here under the project AMMONOX—Ammonia for enhancing biogas yield & reducing NOx (No 12069) and the CHEC Research Center for facilitating access to Elemental Analysis equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis V. Skiadas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lymperatou, A., Gavala, H.N. & Skiadas, I.V. Aqueous Ammonia Soaking of Wheat Straw at Ambient Temperature for Enhancing the Methane Yield: Process Optimization by Response Surface Methodology. Waste Biomass Valor 11, 4821–4835 (2020). https://doi.org/10.1007/s12649-019-00806-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00806-7

Keywords

Navigation