Log in

Utilization of Corn Cob Waste for Cellulase-Free Xylanase Production by Aspergillus niger DX-23: Medium Optimization and Strain Improvement

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Aspergillus niger DX-23 produces a cellulase-free xylanase which showed efficient deinking of old newspaper pulp for recycled paper production. Towards economical production of the above xylanase when various agro-waste biomass were evaluated as substrates, under shake flask conditions, A. niger DX-23 produced highest amount of xylanase (59.5 ± 5.0 U/mL) using corn cob powder as substrate. A central composite design was used to optimize concentration of corn cob powder, NaNO3 and KH2PO4 in the medium for maximum xylanase production. The optimum concentration of the above nutrients were determined to be 37.0 g/L corn cob powder, 2.5 g/L of NaNO3 and 1.0 g/L of KH2PO4 at which level xylanase yield of 110.4 U/mL was obtained, which was 82.9 % more than the yield obtained in unoptimized medium. Moreover, under shake flask conditions, 5.0 % (v/v) of inoculum, pH of 5.0 and incubation time of 84 h was found to be suitable for maximum xylanase production. At laboratory fermentor level, A. niger DX-23 produced 79.4 U/mL (after 96 h) and 117.9 U/mL (after 72 h) xylanase using untreated corncob powder and alkali treated corn cob powder, respectively. In order to obtain higher xylanase procuring strains, A. niger DX-23 was mutagenized using UV rays. In optimized medium mutant strain of A. niger produced 150.9 ± 3.4 U/mL of xylanase which was 118.0 % higher than the xylanase yield obtained for parent type in unoptimized medium (60.2 ± 2.6 U/mL). The above results suggested effectiveness of the combined strategy of medium optimization and mutation towards enhanced production of xylanase by A. niger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goyal, M., Kalra, K.L., Sareen, V.K., Soni, G.: Xylanase production with xylan rich lignocellulosic wastes by a local soil isolate of Trichoderma viride. Braz. J. Microbiol. 39, 535–541 (2008)

    Article  Google Scholar 

  2. Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., Amorim, D.S.: Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591 (2005)

    Article  Google Scholar 

  3. Bajaj, B.K., Abbass, M.: Studies on an alkali-thermostable xylanase from Aspergillus fumigatus MA28 Massarat. 3. Biotech. 1, 161–171 (2011)

    Google Scholar 

  4. Bakri, Y., Jacques, P., Thonart, P.: Xylanase production by Penicillium canescens 10–10c in solid state fermentation. Appl. Biochem. Biotechnol. 108, 737–748 (2003)

    Article  Google Scholar 

  5. Li, Y., Liu, Z., Cui, F., Xu, Y., Zhao, H.: Production of xylanase from a newly isolated Penicillium sp. ZH-30. World J. Microbiol. Biotechnol. 23, 837–843 (2007)

    Article  Google Scholar 

  6. Shah, A.R., Datta, M.: Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization. Process Biochem. 40, 1763–1771 (2005)

    Article  Google Scholar 

  7. da Silva, L.A.O., Carmona, E.C.: Production and characterization of cellulase-free xylanase from Trichoderma inhamatum. Appl. Biochem. Biotechnol. 150, 117–125 (2008)

    Article  Google Scholar 

  8. Desai, D., Iyer, B.: Biodeinking of old newspaper pulp using a cellulase-free xylanase preparation of Aspergillus niger DX-23. Biocatal. Agric. Biotechnol. 5, 78–85 (2016)

    Google Scholar 

  9. Souissi, N., Ellouz-Triki, Y., Bougatef, A., Blibech, M., Nasri, M.: Preparation and use of media for protease producing bacterial strains based on by-products from Cuttlefish (Sepia officinalis) and wastewaters from marine-products processing factories. Microbiol. Res. 163, 473–480 (2008)

    Article  Google Scholar 

  10. Uday, U.S.P., Choudhury, P., Bandyopadhyay, T.K., Bhunia, B.: Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int. J. Biol. Macromol. 82, 1041–1054 (2016)

    Article  Google Scholar 

  11. Ghazi, S., Sepahy, A.A., Azin, M., Khaje, K., Khavarinejad, R.: UV mutagenesis for the overproduction of xylanase from Bacillus mojavensis PTCC 1723 and optimization of the production condition. Iran. J. Basic Med. Sci. 17, 844 (2014)

    Google Scholar 

  12. Bhunia, B., Dutta, D., Chaudhuri, S.: Selection of suitable carbon, nitrogen and sulphate source for the production of alkaline protease by Bacillus licheniformis NCIM-2042. Notulae Scientia Biologicae 2, 56 (2010)

    Google Scholar 

  13. Irfan, M., Nadeem, M., Syed, Q.: One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J. Radiat. Res. Appl. Sci. 7, 317–326 (2014)

    Article  Google Scholar 

  14. Bas, D., Boyaci, I.H.: Modeling and optimization I: usability of response surface methodology. J. Food Eng. 78, 836–845 (2007)

    Article  Google Scholar 

  15. Khonzue, P., Laothanachareon, T., Rattanaphan, N., Tinnasulanon, P., Apawasin, S., Paemanee, A., Ruanglek, V., Tanapongpipat, S., Champreda, V., Eurvilaichitr, L.: Optimization of xylanase production from Aspergillus niger for biobleaching of eucalyptus pulp. Biosci. Biotechnol. Biochem. 75, 1129–1134 (2011)

    Article  Google Scholar 

  16. Cui, F., Li, Y., Liu, Z., Zhao, H., **, L., **, L., Yang, Y., Xue, Y., Yan, L.: Optimization of fermentation conditions for production of xylanase by a newly isolated strain, Penicillium thiersii ZH-19. World J. Microbiol. Biotechnol. 25, 721–725 (2009)

    Article  Google Scholar 

  17. Rani, G.B., Chiranjeevi, T., Chandel, A.K., Satish, T., Radhika, K., Narasu, M.L., Uma, A.: Optimization of selective production media for enhanced production of xylanases in submerged fermentation by Thielaviopsis basicola MTCC 1467 using L16 orthogonal array. J. Food Sci. Technol. 51, 2508–2516 (2014)

    Article  Google Scholar 

  18. Garai, D., Kumar, V.: Response surface optimization for xylanase with high volumetric productivity by indigenous alkali tolerant Aspergillus candidus under submerged cultivation. 3. Biotech. 3, 127–136 (2013)

    Google Scholar 

  19. Chawachart, N., Kasinubon, Y., Khanongnuch, C., Leisola, M., Lumyong, S.: Evaluation of xylanase production by a thermophillic fungus Thermoascus aurantiacus SL16W using statistic experimental designs and the arabinose inductive effect. Chiang Mai J. Sci. 41, 48–59 (2014)

    Google Scholar 

  20. Agrawal, R., Deepika, N.U.A., Joseph, R.: Strain improvement of Aspergillus sp. and Penicillium sp. by induced mutation for biotransformation of α-pinene to verbenol. Biotechnol. Bioeng. 63, 249–252 (1999)

    Article  Google Scholar 

  21. Kang, S.W., Ko, E.H., Lee, J.S., Kim, S.W.: Over-production of β-glucosidase by Aspergillus niger mutant from lignocellulosic biomass. Biotechnol. Lett. 21, 647–650 (1999)

    Article  Google Scholar 

  22. Nicolas-Santiago, D., Regalado-Gonzalez, C., Garcia-Almendarez, B., Fernandez, F. J., Tellez-Jurado, A., Huerta-Ochoa, S.: Physiological, morphological, and mannanase production studies on Aspergillus niger uam-gs1 mutants. Electron. J. Biotechnol. 9, 712 (2006)

  23. Kaur, K., Kahlon, R.S.: Production of Xylanase by Wild and Mutant strains of Humicola insolens. Int. J. Curr. Microbiol. App. Sci. 3, 348–364 (2014)

    Google Scholar 

  24. Bhargav, S., Panda, B., Ali, M.: Solid-state fermentation: an overview. Chem. Biochem. Eng. 22, 49–70 (2008)

    Google Scholar 

  25. Joshi, C., Khare, S.K.: Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum. Bioresour. Technol. 102, 1722–1726 (2011)

    Article  Google Scholar 

  26. Garcia-Kirchner, O., Munoz-Aguilar, M., Perez-Villalva, R., Huitron-Vargas, C.: Mixed submerged fermentation with two filamentous fungi for cellulolytic and xylanolytic enzyme production. In Biotechnology for Fuels and Chemicals. pp 1105–1114 (2002)

  27. Torres, J.M.O., de Cruz, T.E.E.: Production of xylanases by mangrove fungi from the Philippines and their application in enzymatic pretreatment of recycled paper pulps. World J. Microbiol. Biotechnol. 29, 645–655 (2013)

    Article  Google Scholar 

  28. Hauli, I., Sarkar, B., Mukherjee, T., Chattopadhyay, A., Mukhopadhyay, S.K.: Alkaline extraction of xylan from agricultural waste, for the cost effective production of xylooligosaccharides, using thermoalkaline xylanase of thermophilic Anoxybacillus sp. Ip-C. Int. J. Pure App. Biosci. 6, 126–131 (2013)

    Google Scholar 

  29. Howard, R.L., Abotsi, E., Van Rensburg, E.L.J., Howard, S.: Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr. J. Biotechnol. 12, 602–619 (2003)

    Article  Google Scholar 

  30. Betini, J.H.A., Michelin, M., Peixoto-Nogueira, S.C., Jorge, J.A., Terenzi, H.F., Polizeli, M.L.T.M.: Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess. Biosyst. Eng. 32, 819–824 (2009)

    Article  Google Scholar 

  31. Savanth, V.D., Patel, S. J.: Enhanced production of xylanase from local fungal isolates and effectiveness in pulp treatment. Int. J. Innov. Res. Sci. Eng. Technol. 2 (2013)

  32. Nagar, S., Gupta, V.K., Kumar, D., Kumar, L., Kuhad, R.C.: Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J. Ind. Microbiol. Biotechnol. 37, 71–83 (2010)

    Article  Google Scholar 

  33. Mandels, M., Weber, J.: The production of cellulases. Adv. Chem. Ser. 95, 391–412 (1969)

    Article  Google Scholar 

  34. Joglekar, A.M., May, A.T.: Product excellence through design of experiments. Cereal Food World. 32, 857–868 (1987)

    Google Scholar 

  35. Masui, D.C., Zimbardi, A.L.R.L., Souza, F.H.M., Guimaraes, L.H.S., Furriel, R.P.M., Jorge, J.A.: Production of a xylose-stimulated β-glucosidase and a cellulose free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation. World J. Microbiol. Biotechnol. 28, 2689–2701 (2012)

    Article  Google Scholar 

  36. Revankar, M.S., Desai, K.M., Lele, S.S.: Solid-state fermentation for enhanced production of laccase using indigenously isolated Ganoderma sp. Appl. Biochem. Biotechnol. 143, 16–26 (2007)

    Article  Google Scholar 

  37. Henika, R.G.: Simple and effective system for use with response surface methodology. Cereal Sci. Today. 17, 309–314 (1972)

    Google Scholar 

  38. Su, Y., Zhang, X., Hou, Z., Zhu, X., Guo, X., Ling, P.: Improvement of xylanase production by thermophilic fungus Thermomyces lanuginosus SDYKY-1 using response surface methodology. New Biotechnol. 28, 40–46 (2011)

    Article  Google Scholar 

  39. Cui, F., Zhao, L.: Optimization of xylanase production from Penicillium sp. WX-Z1 by a two-step statistical strategy: Plackett-Burman and Box-Behnken experimental design. Int. J. Mol. Sci. 13, 10630–10646 (2012)

    Article  Google Scholar 

  40. Ahmad, Z., Butt, M.S., Anjum, F.M., Awan, M.S., Rathore, H.A., Nadeem, M.T., Ahmad, A., Khaliq, A.: Effect of corn cobs concentration on xylanase biosynthesis by Aspergillus niger. Afr. J. Biotechnol. 7, 1674–1682 (2012)

    Google Scholar 

  41. De Souza, C.G.M., Girardo, N.S., Costa, M.A.F., Peralta, R.M.: Influence of growth conditions on the production of xylanolytic enzymes by Aspergillus flavus. J. Basic Microbiol. 39, 155–160 (1999)

    Article  Google Scholar 

  42. Palma, M.B., Milagres, A.M.F., Prata, A.M.R., Manicilha, D.I.M.: Influence of aeration and agitation on xylanase production. Braz. Process J. Biochem. 31, 141–145 (1996)

    Article  Google Scholar 

  43. Gawande, P.V., Kamat, M.Y.: Production of Aspergillus xylanase by lignocellulosic waste fermentaion and its application. J. Appl. Microbiol. 87, 511–519 (1999)

    Article  Google Scholar 

  44. Christov, L.P., Szakacs, G., Balakrishnan, H.: Production, partial characterization and use of fungal cellulase-free xylanases. Process Biochem. 34, 511–517 (1999)

    Article  Google Scholar 

  45. Dutt, D., Tyagi, C.H., Singh, R.P., Gautam, A., Agnohotri, S., Kumar, A.: Isolation and biochemical characterization of crude xylanase from Coprinus cinereus AT-1 MTCC 9695 and its effectiveness in biodeinking of SOP. Cellulose Chem. Technol. 47, 203–217 (2013)

    Google Scholar 

  46. Silveira, F.Q.P., **menes, F.A., Cacais, A.O.G., Milagres, A.M.F., Mederros, C.L., Puls, J.E., Filno, E.X.F.: Hydrolysis of xylans by enzyme system from solid cultures of Trichoderma harzianum strains. Braz. J. Med. Biol. Res. 32, 947–952 (1999)

    Google Scholar 

  47. Rose, S.H., Van, Z.W.: Constitute expression of Trichoderma reesei beta 1, 4 xylanase gene (xyn 2) and the beta 1, 4-endoglucanase gene. (eg 1) in Aspergillus niger in molasses and defined glucose media. Appl. Microbiol. Biotechnol. 58, 461–468 (2004)

    Google Scholar 

  48. Brown, D.E., Zainudeen, M.A.: Effect of inoculum size on the aeration pattern of batch cultures of a fungal microorganism. Biotechnol. Bioeng. 20, 1045–1061 (1978)

    Article  Google Scholar 

  49. Ersayin, Y.S., Sahin, A.F.I., Haberal, M.: Isolation of endopyhtic and xylanolytic Bacillus pumilus strains from Zea mays. Tarim Bilimleri Dergisi. 14, 374–380 (2008)

    Article  Google Scholar 

  50. Sanghvi, G., Jivrajani, M., Patel, N., Jivrajani, H., Bhaskara, G.B., Patel, S.: Purification and characterization of haloalkaline, organic solvent stable xylanase from newly isolated halophilic Bacterium-OKH (2013)

  51. Peixoto-Nogueira, S.C., Michelin, M., Betini, J.H.A., Jorge, J.A., Terenzi, H.F., Polizeli, M.L.T.M.: Production of xylanase by Aspergilli using alternative carbon sources: application of the crude extract on cellulose pulp biobleaching. J. Ind. Microbiol. Biotechnol. 36, 149–155 (2009)

    Article  Google Scholar 

  52. Bajaj, B.K., Sharma, M., Sharma, S.: Alkalistable endo-β-1,4-xylanase production from a newly isolated alkalitolerant Penicillium sp. SS1 using agro-residues. Biotech. 1, 83–90 (2011)

    Google Scholar 

  53. Cai, J.M., Ke, W., Zhow, Y., Jie, Z., Bang, J., Ruipen, R.: Production of xylanase by Penicillium sp. P1 using solid state fermentation. ShipinYu Fajio Gongye 23, 30–33 (1997)

    Google Scholar 

  54. Senthilkumar, S.R., Ashokkumar, B., Chandra, R.K., Gunasekaran, P.: Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresour. Technol. 96, 1380–1386 (2005)

    Article  Google Scholar 

  55. Botella, C., Diaz, A., de Ory, I., Webb, C., Blandino, A.: Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem. 42, 98–101 (2007)

    Article  Google Scholar 

  56. Kumar, K.S., Manimaran, A., Permaul, K., Singh, S.: Production of β-xylanase by a Thermomyces lanuginosusMC134 mutant on corn cobs and its application in biobleaching of bagasse pulp. J. Biosci. Bioeng. 107, 494–498 (2009)

    Article  Google Scholar 

  57. Gomes, J., Steiner, W.: Production of highly thermostable xylanase by a wild strain of thermophilic fungus Thermoascus aurantiacus and partial characterization of the enzyme. J. Biotechnol. 37, 11–22 (1994)

    Article  Google Scholar 

  58. Oncu, S., Tari, C., Unluturk, S.: Effect of various process parameters on morphology, rheology, and polygalacturonase production by Aspergillus sojae in a batch bioreactor. Biotechnol. Prog. 23, 836–845 (2007)

    Article  Google Scholar 

  59. Berovic, M., Cimerman, A., Steiner, W., Koloini, T.: Submerged citric acid fermentation: rheological properties of Aspergillus niger broth in a stirred tank reactor. Appl. Microbiol. Biotechnol. 34, 579–581 (1991)

    Article  Google Scholar 

  60. Sangkharak, K., Vangsirikul, P., Janthachat, S.: Strain improvement and optimization for enhanced production of cellulase in Cellulomonas sp. TSU-03. Afr. J. Microbiol. 6, 1079–1084 (2012)

    Google Scholar 

  61. Irfan, M., Javed, J., Syed, Q.: UV mutagenesis of Aspergillus niger for enzyme production in submerged fermentation. Pak. J. Biochem. Mol. Biol. 44, 137–140 (2011)

    Google Scholar 

Download references

Acknowledgments

We are thankful to Charotar University of Science and Technology for providing us financial support, laboratory and instrument facilities. We are also grateful to Dr. Ujjwal Trivedi and Ms Deval Patel (B.R.Doshi Bioscience Department, Sardar Patel Univeristy, Anand, Gujarat) for providing fermenter facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bragadish D. Iyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, D.I., Iyer, B.D. Utilization of Corn Cob Waste for Cellulase-Free Xylanase Production by Aspergillus niger DX-23: Medium Optimization and Strain Improvement. Waste Biomass Valor 8, 103–113 (2017). https://doi.org/10.1007/s12649-016-9567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9567-4

Keywords

Navigation