Log in

Eco-friendly synthesis of Eu3+, Sm3+, and Dy3+-doped monticellite-based ceramic powders: effects of rare-earth dopants and synthesis temperature

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Eco-friendly luminescent monticellite-based ceramic powders were synthesized from boron derivative waste at low temperatures. It aimed to investigate the effects of rare-earth dopants and synthesis temperature on phase evolution, photoluminescence properties, and microstructural development of Eu3+, Sm3+, and Dy3+-doped powders. The powders synthesized at 800 °C and 900 °C include the same major phases: monticellite, akermanite, and calcium magnesium borate. No rare-earth oxide clusters are observed during their microstructural analysis. However, powders produced at 800 °C give stronger emission lines than 900 °C. Eu3+-doped powders exhibited characteristic emission at 619 nm originating from the 5D0 → 7F2 transition under excitation at 248 nm, assuring CIE color coordinates of standard red light. A strong emission in the orange-red region (610 nm) is assigned to the 4G5/2 → 6H7/2 transition of Sm3+ upon excitation at 408 nm. Moreover, Dy3+-doped powders demonstrate two major emission lines at 489 nm (blue) and 583 nm (yellow) attributed to typical 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions under 392 nm, providing the color coordinates of CIE (Commission International de I’Eclairage) close to white light. Therefore, RE3+-doped monticellite-based ceramic powders, produced from boron derivative waste in an eco-friendly way, carry the potential to be used as luminescent materials for lighting, display, and bioimaging applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. J Lucas, P Lucas, T Le Mercier, A Rollat and W Davenport Rare Earths (Amsterdam: Elsevier) (2015)

    Google Scholar 

  2. K V R Murthy and H S Virk Defect Diffu. Forum 347 1 (2014)

    Article  Google Scholar 

  3. S J Dhoble, N T Kalyani, B Vengadaesvaran, and A K Arof Synthesis and luminescence study of silicate-based phosphors for energy-saving light-emitting diodes (ed) A K A S.J. Dhoble, N.Thejo Kalyani, B. Vengadaesvaran (Amsterdam: Elsevier) (2021)

  4. D Ehrt IOP Conf. Series: Mater. Sci. Eng. 2 012001 (2009)

  5. R Mahajan and R Prakash J. Mater. Sci. Mater. Electron. 31 3861 (2020)

    Article  Google Scholar 

  6. B Verma, R N Baghel, D P Bisen, N Brahme and V Jena Opt. Mater. 123 111787 (2022)

    Article  Google Scholar 

  7. C Guo and H Suo Design of Single-Phased Multicolor-Emission Phosphor for LED (ed) R S Liu, (Berlin : Springer-Verlag Berlin) p 459 (2017)

  8. A Birkel, L E Darago, A Morrison, L Lory, N C George, A A Mikhailovsky, C S Birkel and R Seshadri Solid State Sci. 14 739 (2012)

    Article  ADS  Google Scholar 

  9. K Mondal and J Manam J. Mol. Struct. 1125 503 (2016)

    Article  ADS  Google Scholar 

  10. C Zhang, X Gong, R Cui and C Deng J. Alloys Comp. 658 898 (2016)

    Article  Google Scholar 

  11. J H Park Metallurg. Mater. Trans. B 44 938 (2013)

    Article  ADS  Google Scholar 

  12. Z **a, Y Zhang, M S Molokeev, V V Atuchin and Y Luo Sci. Rep. 3 1 (2013)

    Google Scholar 

  13. Z Zhang and Y Wang J. Lumin. 128 383 (2008)

    Article  Google Scholar 

  14. A Pawar, A Jadhav, C Woo and H Gil J. Lumin. 157 131 (2015)

    Article  Google Scholar 

  15. A U Pawar, A P Jadhav, U Pal, B K Kim and Y S Kang J. Lumin. 132 659 (2012)

    Article  Google Scholar 

  16. A Lecointre, A Bessiere, K R Priolkar, D Gourier, G Wallez and B Viana Mater. Res. Bull. 48 1898 (2013)

    Article  Google Scholar 

  17. Y Chen, X Cheng, M Liu, Z Qi and C Shi J. Lumin. 129 531 (2009)

    Article  Google Scholar 

  18. S H Lee, J H Park, S M Son, J S Kim, H L Park and H L Park Appl. Phys. Lett. 89 221916 (2006)

    Article  ADS  Google Scholar 

  19. L Jiang, C Chang, D Mao and C Feng J. Alloys Comp. 377 211 (2004)

    Article  Google Scholar 

  20. R K Padhi, P Vinodkumar, S Panda and B S Panigrahi Solid State Sci. 118 106647 (2021)

    Article  Google Scholar 

  21. P Dewangan, D P Bisen, N Brahme and S Sharma J. Alloys Comp. 777 423 (2019)

    Article  Google Scholar 

  22. V Singh, G Lakshminarayana, A Wagh and N Singh Optik Int. J. Light Electron Opt. 206 164240 (2020)

    Article  Google Scholar 

  23. E Karacaoglu and B Karasu Sec A 54A 1394 (2015)

    Google Scholar 

  24. M Zhang, J Wang, W Ding, Q Zhang and Q Su Opt. Mater. 30 571 (2007)

    Article  ADS  Google Scholar 

  25. J Liu, Y Wang, C-Y Lin and C-F Yang Cryst. Growth Des. 20 3154–3162 (2020)

    Article  Google Scholar 

  26. S H M Poort, H M Reijnhoudt, H O T van der Kuip and G Blasse J. Alloys Comp. 241 75 (1996)

    Article  Google Scholar 

  27. Y Li, Y Wang, X Xu, G Yu and F Zhang J. Electrochem. Soc. 157 J39 (2010)

    Article  ADS  Google Scholar 

  28. K Suresh, K Vijay Babu, K Srinivasa Rao, K Naresh Kumar, N V Rao-Poornachandra and K V R Murthy Int. J. Lumin. Appl. 5 229 (2015)

    Google Scholar 

  29. D Kim, D Lim, H Ryu, J Lee, S Il Ahn, B S Son, S Kim, C H Kim and J Park Inorg Chem. 56 12116 (2017)

    Article  Google Scholar 

  30. B R Verma, R N Baghel, D P Bisen, S Ghosh and V Jena Int. J. Appl. Eng. Res. 14 2162 (2019)

    Google Scholar 

  31. B R Verma, R N Baghel, D P Bisen, N Brahme, and A Khare IOP Conf. Series: Materi. Sci. Eng. 798 1 (2020)

  32. L Koroglu and E Ayas Adv. Powder Technol. 29 2835 (2018)

    Article  Google Scholar 

  33. A Monshi, M R Foroughi and M R Monshi World J. Nano Sci. Eng. 2 154 (2012)

    Article  ADS  Google Scholar 

  34. D Cullity and S R Stock Elements of X-Ray Diffraction, 3rd edn. (London: Pearson) (2001)

    Google Scholar 

  35. J S Revathy, N S C Priya, K Sandhya and D N Rajendran Bull Mater Sci 44 1 (2021)

    Article  Google Scholar 

  36. R D Shannon Acta Cryst. A32 751 (1976)

    Article  Google Scholar 

  37. J I Goldstein, D E Newbury, J R Michael, N W M Ritchie, J H J Scott and D C Joy Scanning Electron Microscopy and X-Ray Microanalysis fourth (New York: Springer) (2018)

    Book  Google Scholar 

  38. C Zhangab and J Lin Chem. Soc. Rev. 41 7938 (2012)

    Article  Google Scholar 

  39. Z **a and A Meijerink Chem. Soc. Rev. 46 275 (2017)

    Article  Google Scholar 

  40. K Mostafavi, M Ghahari, S Baghshahi and A M Arabi J. Alloys Comp. 555 62 (2013)

    Article  Google Scholar 

  41. I P Sahu, D P Bisen and N Brahme J. Radiat. Res. Appl. Sci. 8 381 (2015)

    Google Scholar 

  42. B Demir, D Derince, T Dayioglu, L Koroglu, E Karacaoglu, V Uz and E Ayas Ceram. Int. 47 34657 (2021)

    Article  Google Scholar 

  43. S Shanmuga Sundari, K Marimuthu, M Sivraman and S Surendra Babu J. Lumin. 130 1313 (2010)

    Article  Google Scholar 

  44. G S R Raju and S Buddhudu Spectrochim. Acta Part A Molecul. Biomol. Spectrosc. 70 601 (2008)

    Article  ADS  Google Scholar 

  45. V Singh, S Watanabe, T K G Rao, J F D Chubaci and H Y Kwak J. Non-Cryst. Solids 356 1185 (2010)

    Article  ADS  Google Scholar 

  46. H-R Shih and Y-S Chang Materials 10 1 (2017)

    Article  Google Scholar 

  47. H Kaur, M Jayasimhadri, M K Sahu, P K Rao and N S Reddy Ceram. Int. 46 26434 (2020)

    Article  Google Scholar 

  48. X Zhang, Z Lu, F Meng, L Hu, X Xu, J Lin and C Tang Mater. Lett. 79 292 (2012)

    Article  Google Scholar 

  49. C Wei, D Xu, Z Yang, Y Jia, X Li and J Sun RSC Adv. 9 27817 (2019)

    Article  ADS  Google Scholar 

  50. N Shasmal and B Karmakar J. Asian Ceram. Soc. 7 42 (2019)

    Article  Google Scholar 

  51. J A Wani, N S Dhoble, S P Lochab and S J Dhoble Nuclear Inst. Methods Phys. Res. B 349 56 (2015)

    Article  ADS  Google Scholar 

  52. S Wang, C Xu and X Qiao J. Mater. Sci. Mater. Electron. 31 9605 (2020)

    Article  Google Scholar 

  53. G Tiwari, N Brahme, R Sharma, D P Bisen, S K Sao and A Khare J. Lumin. 183 89 (2017)

    Article  Google Scholar 

  54. P Zhu, H Zhu, G C Adhikari and S Thapa OSA Contin. 2 1880 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Koroglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koroglu, L., Karacaoglu, E., Demir, B. et al. Eco-friendly synthesis of Eu3+, Sm3+, and Dy3+-doped monticellite-based ceramic powders: effects of rare-earth dopants and synthesis temperature. Indian J Phys 97, 4187–4198 (2023). https://doi.org/10.1007/s12648-023-02749-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02749-1

Keywords

Navigation