Log in

Resonance frequency of ferromagnetic/ferromagnetic bilayers with bilinear and biquadratic coupling

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The effects of bilinear coupling, biquadratic coupling and stress anisotropy on ferromagnetic resonance frequency are investigated in ferromagnetic/ferromagnetic bilayers with in-plane uniaxial anisotropy. The intensity of applied magnetic field dependence of resonance frequencies is studied for different bilinear couplings, biquadratic couplings and stress anisotropies. It is shown that resonance frequency can be tunable by the intensity of bilinear coupling, biquadratic coupling and stress anisotropy. Moreover, the biquadratic coupling is more important than bilinear coupling for the optical mode. Simultaneously, we find the frequencies of two modes have a very distinct dependence on stress anisotropy. These results may be useful in designing new microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J Åkerman Science 308 508 (2005). https://doi.org/10.1126/science.1110549

  2. S M Thompson J. Phys. D: Appl. Phys. 41 093001 (2008). https://doi.org/10.1088/0022-3727/41/9/093001

  3. T Kimura and M Hara Appl. Phys. Lett. 97 182501 (2010). https://doi.org/10.1063/1.3502475

  4. J Geshev, L G Pereira and J E Schmidt Phys. B 320 169 (2002). https://doi.org/10.1016/S0921-4526(02)00670-1

  5. P G Barreto, M A Sousa, F Pelegrini, W Alayo, F J Litterst and E Baggio-Saitovitch Appl. Phys. Lett. 104 202403 (2014). http://dx.doi.org/10.1063/1.4875929

    Article  Google Scholar 

  6. C J Aas, P J Hasnip, R Cuadrado, E M Plotnikova, L Szunyogh, L Udvardi and RW Chantrell Phys. Rev. B 88 174409 (2013). http://dx.doi.org/10.1103/PhysRevB.88.174409

    Article  Google Scholar 

  7. C Degera, I Yavuza and F Yildizb J. Magn. Magn. Mater. 489 165399 (2019). https://doi.org/10.1016/j.jmmm.2019.165399

    Article  Google Scholar 

  8. J-L Déjardin, A Franco, F Vernay and H Kachkachi Phys. Rev. B 97 224407 (2018). https://doi.org/10.1103/PhysRevB.97.224407

    Article  Google Scholar 

  9. H Tomishige, J Nasu and A Koga Phys. Rev. B 97 094403 (2018). https://doi.org/10.1103/PhysRevB.97.094403

    Article  Google Scholar 

  10. A Layadi J. Appl. Phys. 87 1429 (2000). https://doi.org/10.1063/1.372030

  11. J G Hu, G J ** and Y Q Ma J. Appl. Phys. 91 2180 (2002). https://doi.org/10.1063/1.1433927

  12. S M Rezende, A Azevedo, M A Lucena and F M de Aguiar Phys. Rev. B 63 214418 (2002). https://doi.org/10.1103/PhysRevB.63.214418

    Article  Google Scholar 

  13. B Khodadadi, J B Mohammadi, J M Jones, A Srivastava, C Mewes, T Mewes and C Kaiser Phys. Rev. Appl. 8 014024 (2017). https://doi.org/10.1103/PhysRevApplied.8.014024

    Article  Google Scholar 

  14. W F Wang, G Z Chai and D S Xue, J. Phys. D: Appl. Phys. 50 365003 (2017). https://doi.org/10.1088/1361-6463/aa7f7c

    Article  Google Scholar 

  15. A F Franco and P Landeros J. Phys. D: Appl. Phys. 49 385003 (2016). https://doi.org/10.1088/0022-3727/49/38/385003

    Article  ADS  Google Scholar 

  16. J B Mohammadi, J M Jones, S Paul, B Khodadadi, C K A Mewes, T Mewes and C Kaiser Phys. Rev. B 95 064414 (2017). https://doi.org/10.1103/PhysRevB.95.064414

    Article  ADS  Google Scholar 

  17. A Layadi Phys. Rev. B 65 104422 (2002). https://doi.org/10.1103/PhysRevB.65.104422

  18. Y Wei, S Akansel, T Thersleff, I Harward, R Brucas, M Ranjbar, S Jana, P Lansaker, Y Pogoryelov, R K Dumas, K Leifer, O Karis, J Åkerman, Z Celinski and P Svedlindh Appl. Phys. Lett. 106 042405 (2015). https://doi.org/10.1063/1.4906591

    Article  Google Scholar 

  19. R Koch J. Phys.: Condens. Matter 6 9519 (1994). https://doi.org/10.1088/0953-8984/6/45/005

  20. D Sander Rep. Prog. Phys. 62 809 (1999). https://doi.org/10.1088/0034-4885/62/5/204

  21. D Sander, S Ouazi, A Enders, Th Gutjahr-Loser, V S Stepanyuk, D I Bazhanov and J Kirschner J. Phys.: Condens. Matter 14 4165 (2002). https://doi.org/10.1088/0953-8984/14/16/308

  22. D Sander Curr. Opin. Solid State Mater. Sci. 7 51 (2003). https://doi.org/10.1016/s1359-0286(02)00137-7

  23. M Gueye, F Zighem, M Belmeguenai, M Gabor, C Tiusan and D Faurie J. Phys. D: Appl. Phys. 49 265001 (2016). https://doi.org/10.1088/0022-3727/49/26/265001

    Article  ADS  Google Scholar 

  24. A Sipeky and A Ivanyi Phys. B 372 177 (2006). https://doi.org/10.1016/j.physb.2005.10.042

    Article  ADS  Google Scholar 

  25. M Farle Rep. Prog. Phys. 61 755 (1998). https://doi.org/10.1088/0034-4885/61/7/001

  26. J H E Griffiths Nature 158 670 (1946). https://doi.org/10.1038/158670a0

  27. E de Biasi, C A Ramos and R D Zysler J. Magn. Magn. Mater. 262 235 (2003). https://doi.org/10.1016/s0304-8853(02)01496-8

    Article  ADS  Google Scholar 

  28. D I Mircea and T W Clinton Appl. Phys. Lett. 90 142504 (2007). https://doi.org/10.1063/1.2719241

    Article  ADS  Google Scholar 

  29. C L Wang, S H Zhang, S Z Qiao, H L Du, X M Liu, R C Sun, X M Chu, G X Miao, Y Y Dai, S S Kang, S S Yan and S D Li Appl. Phys. Lett. 112 192401 (2018). https://doi.org/10.1063/1.5018809

    Article  Google Scholar 

  30. L Zhang, J H Rong, G H Yun, D Wang and L B Bao Phys. B 502 5 (2016). https://doi.org/10.1016/j.physb.2016.08.032

  31. L Zhang, J H Rong, G H Yun, D Wang and L B Bao Mater. Res. Express 3 076101 (2016). https://iopscience.iop.org/article/10.1088/2053-1591/3/7/076101

  32. J H Rong, L Zhang, G H Yun and L B Bao Indian J. Phys. 93 207 (2019). https://doi.org/10.1007/s12648-018-1290-5

    Article  Google Scholar 

  33. H Wang, J H Rong, G H Yun and L B Bao Acta Phys. Pol. A 136 405 (2019). https://doi.org/10.12693/APhysPolA.136.405

  34. J H Rong, G H Yun, B Narsu and D W L Sprung J. Appl. Phys. 100 083901 (2006). https://doi.org/10.1063/1.2357994

    Article  ADS  Google Scholar 

  35. V G Harris IEEE Trans. Magn. 48 1075 (2012). https://doi.org/10.1109/TMAG.2011.2180732

  36. J Smit and H G Beljers Philips Res. Rep. 10 113 (1955)

    Google Scholar 

  37. Y Wei, R Brucas, K Gunnarsson, Z Celinski and P Svedlindh Appl. Phys. Lett. 104 072404 (2014). https://doi.org/10.1063/1.4865418

Download references

Acknowledgements

The work has been supported by the National Natural Science Foundation of China under Grant No. 11664030, and by the Nature Science Foundation of Inner Mongolia of China under Grant No. 2019MS01021, and by the Science and Technology Research Projects in Colleges and Universities of Inner Mongolia of China under Grant No. NJZY13072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhou, JY., Wang, YN. et al. Resonance frequency of ferromagnetic/ferromagnetic bilayers with bilinear and biquadratic coupling. Indian J Phys 95, 2359–2364 (2021). https://doi.org/10.1007/s12648-020-01904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01904-2

Keywords

Navigation