Log in

Non-centrosymmetric LiBaB9O15 single crystal: growth and characterization

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The non-centrosymmetric LiBaB9O15 single crystal was synthesized by employing high-temperature solution reaction methods at 830 °C. Single-crystal X-ray diffraction analysis showed that it crystallized in the non-centrosymmetric space group R3c, with cell dimensions a = 10.973(1) Å, c = 17.049(2) Å, Z = 6 and V = 1777.8(3) Å3, having 3D frameworks consisting of [B3O7]5− groups bridged by O atoms, with channels occupied by Li+ and Ba2+ cations. The atomic positions taken from X-ray diffraction data were optimized by minimizing the forces acting on the atoms. From the relaxed geometry, the electronic structure and the chemical bonding were determined and various spectroscopic features were calculated and compared with experimental data. The state-of-the-art all-electron full-potential linearized augmented plane wave method within the Ceperley–Alder local density approximation and the gradient approximation was used to solve the Kohn–Sham density functional theory equations. Very good agreement between the measurements and the calculations was found. The calculated effective mass ratio of heavy holes \( (m_{\text{hh}}^{*} /m_{\text{e}} ) \), light holes \( (m_{\text{lh}}^{*} /m_{\text{e}} ) \) and electrons \( (m_{\text{e}}^{*} /m_{\text{e}} ) \) was 0.4670, 0.0973 and 0.0120, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B H Rudramadevi and S Buddhudu Indian J. Phys. 83 313 (2009)

    Article  ADS  Google Scholar 

  2. V Aravindan and P Vickraman Indian J. Phys. 86 341 (2012)

    Article  ADS  Google Scholar 

  3. B C Joshi, B Khulbey, D Upreti and C C Dhaundiyal Indian J. Phys. 84 405 (2010)

  4. K N Shinde, I M Nagpure, S J Dhoble, S V Godbole and M K Bhide Indian J. Phys. 83 503 (2009)

  5. P Becker Adv. Mater. 10 979 (1998)

    Article  Google Scholar 

  6. Z-B Lin, Z-S Hu and G-F Wang Chin. J. Struct. Chem. 20 256 (2001)

    Google Scholar 

  7. S-K Pan, G-F Wsng and Z-X Huang Chin. J. Struct. Chem. 21 382 (2002)

    Google Scholar 

  8. C T Chen, B Wu, A Jiang and G You Sci. China B 18 235 (1985)

    Google Scholar 

  9. C T Chen et al. J. Opt. Soc. Am. B 6 616 (1989)

    Article  ADS  Google Scholar 

  10. C T Chen, Y Wang, B Wu, K Wu, W Zeng and L Yu Nature 373 322 (1995)

    Article  ADS  Google Scholar 

  11. W-D Cheng, H Zhang, Q-S Lin, F-K Zheng and J-T Chen Chem. Mater. 13 1841 (2001)

    Article  Google Scholar 

  12. Q Huang, S Lu, G Dai and J Liang Acta Crystallogr. C 48 1576 (1992)

    Article  Google Scholar 

  13. N Penin, L Seguin, M Touboul and G Nowogrocki Inter. J. Inorg. Mater. 3 1015 (2001)

    Article  Google Scholar 

  14. D Yu Pushcharovsky, E R Gobetchia, M Pasero, S Merlino and O V Dimitrova J. Alloys Compd. 339 70 (2002)

    Article  Google Scholar 

  15. A H Reshak et al. J. Phys. Chem. B 117 14141 (2013)

    Article  Google Scholar 

  16. A M El-Naggar et al. J. Cryst. Growth 334 122 (2011)

    Article  ADS  Google Scholar 

  17. I V Kityk et al. J. Phys. Chem. B 110 9090 (2006)

    Article  Google Scholar 

  18. I V Kityk, A Majchrowski, J Zmija, Z Mierczyk, K Nouneh Cryst. Growth Des. 6 2779 (2006)

    Article  Google Scholar 

  19. A Majchrowski, A Mandowska, I V Kityk, M G Brik and I Sildos Curr. Opin. Solid State Mater. Sci. 12 32 (2009)

    Article  ADS  Google Scholar 

  20. Rigaku/AFC Diffractometer Control Software, Rigaku Corporation (1994)

  21. G M Sheldrick Acta Crystallogr. A 64 112 (2008)

    Article  ADS  Google Scholar 

  22. G M Sheldrick, SHELX-97: program for structure refinement. (Germany: University of Goettingen) (1997)

    Google Scholar 

  23. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz WIEN2 K, “an Augmented Plane Wave + Local orbitals program for calculating crystal properties”, (Wien, Austria: Karlheinz Schwarz, Techn. Universitat) (2001) ISBN 3-9501031-1-2

    Google Scholar 

  24. P Hohenberg and W Kohn Phys. Rev. B 136 864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  25. D M Ceperley and B I Ader Phys. Rev. Lett. 45 566 (1980)

    Article  ADS  Google Scholar 

  26. J P Perdew and A Zunger Phys. Rev. B 8 4822 (1973)

    Article  Google Scholar 

  27. J P Perdew, S Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  28. I D Brown and D. Altermatt Acta Crystallogr. B 41 244 (1985)

    Article  Google Scholar 

  29. R D Shannon Acta Crystallogr. A 32 751 (1976)

    Article  ADS  Google Scholar 

  30. F C Hawthorne, P C Burns and J D Grice Rev. Miner. 33 41 (1996)

    Google Scholar 

Download references

Acknowledgments

The CENTEM Project, Reg. No. CZ.1.05/2.1.00/03.0088, co-funded by the ERDF as part of the Ministry of Education, Youth and Sports OP RDI program and, in the follow-up sustainability stage, supported through CENTEM PLUS (LO1402) by financial means from the Ministry of Education, Youth and Sports under the “National Sustainability Programme I” is acknowledged. Computational resources provided by MetaCentrum (LM2010005) and CERIT-SC (CZ.1.05/3.2.00/08.0144) infrastructures are also acknowledged. X. Chen thanks the National Natural Science Foundation of China (Grant No. 20871012) for support. SA would like to thank CSIR-NPL for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Reshak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (CIF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshak, A.H., Chen, X., Kamarudin, H. et al. Non-centrosymmetric LiBaB9O15 single crystal: growth and characterization. Indian J Phys 89, 923–929 (2015). https://doi.org/10.1007/s12648-015-0671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0671-2

Keywords

PACS Nos.

Navigation