Log in

Potential Role of Silicon in Plants Against Biotic and Abiotic Stresses

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In climate change scenarios, biotic and abiotic stresses are among the serious environmental strains that limit agricultural productivity worldwide. Silicon (Si) compounds are now getting much attention in agriculture as a result of explorations into their beneficial effects on plant growth, and development under adverse environments. This review seeks to understand the roles of transport pathways, the up- and down-regulation of biochemical responses, and transporter genes in Si’s effects. Exogenous application of Si enhances plant antioxidant defenses and decreases oxidative stress by limiting production of reactive oxygen species (ROS). Biofortification is one of the best techniques to reduce biotic and abiotic stresses by enhancing a plant’s capacity to accumulate Si. Identifying the novel genes involved in Si transport and modulating their expression level through genetic engineering is one option being considered to prevent biotic and abiotic damage to crop, and to reduce the applications of toxic pesticides, herbicides, and fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

NA.

References

  1. Rodrigues FA, Datnoff LE (2015) Silicon and plant diseases. Springer

  2. Zafar MM et al (2021) Exploiting agronomic and biochemical traits to develop heat resilient cotton cultivars under climate change scenarios 11(9):1885

    Google Scholar 

  3. Zafar MM et al. (2022) Biochemical and associated agronomic traits in Gossypium hirsutum L. under high temperature stress, 12(6): 1310.

  4. Chaudhry UF, KM, Aziz S, Amjad I, Khalid A, Noor H, Sajid HB (2022) Genetic studies in different F2 segregating population for yield and fiber quality traits in cotton (Gossypium hirsutum L.). Int J Agri Biosci, 11(1): 11.

  5. Zafar MM et al. (2021) Effects of salinity stress on some growth, physiological, and biochemical parameters in cotton (Gossypium hirsutum L.) Germplasm: 1–33

  6. Zafar MM et al. (2021) Unraveling Heat Tolerance in Upland Cotton (Gossypium hirsutum L.) Using Univariate and Multivariate Analysis. 12: 727835–727835

  7. Hassan A, NA, Shahani AAA, Aziz S, Khalid MN, Mushtaq N, Munir MA (2022) Assessment of fiber and yield related traits in mutant population of cotton. Int J Agri Biosci, 11(2):8

  8. Zafar MM et al (2022) Genome-wide characterization and expression analysis of Erf gene family in cotton 22(1):1–18

    Google Scholar 

  9. Zafar MM et al. (2020) Genetic variation studies of ionic and within boll yield components in cotton (Gossypium Hirsutum L.) Under Salt Stress: 1–20

  10. Manan A et al. (2022) Genetic analysis of biochemical, fiber yield and quality traits of upland cotton under high-temperature. 25(1): 105–119

  11. Laghari AH, MJ, Chang MS, Hakro SA, Vistro R (2022) Comparative analysis and function of multiprotein bridging factor1 (MBF1) genes in cotton. Int J Agri Biosci, 11(2): 17

  12. Nussaume L et al (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2:83

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deshmukh RK et al (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83(4):303–315

    Article  CAS  PubMed  Google Scholar 

  14. Exley C (2015) A possible mechanism of biological silicification in plants. Front Plant Sci 6:853

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guerriero G et al. (2018) Rough and tough. How does silicic acid protect horsetail from fungal infection? J Trace Elements in Med Biol, 47: 45–52

  16. Exley C, Guerriero G, Lopez X (2020) How is silicic acid transported in plants? Silicon 12(11):2641–2645

    Article  CAS  Google Scholar 

  17. Deshmukh RK et al (2015) A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant J 83(3):489–500

    Article  CAS  PubMed  Google Scholar 

  18. Guerriero G, Hausman J-F, Legay S (2016) Silicon and the plant extracellular matrix. Front Plant Sci 7:463

    Article  PubMed  PubMed Central  Google Scholar 

  19. Puppe D, Sommer M (2018) Experiments, uptake mechanisms, and functioning of silicon foliar fertilization—A review focusing on maize, rice, and wheat. Adv Agron 152:1–49

    Article  Google Scholar 

  20. Trembath-Reichert E et al (2015) Four hundred million years of silica biomineralization in land plants. Proc Natl Acad Sci 112(17):5449–5454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tripathi DK et al (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81

    Article  CAS  PubMed  Google Scholar 

  22. Deshmukh R, Bélanger RR (2016) Molecular evolution of aquaporins and silicon influx in plants. Funct Ecol 30(8):1277–1285

    Article  Google Scholar 

  23. Gomes TM et al (2020) Changes in vineyard productive attributes and phytochemical composition of sauvignon blanc grape and wine induced by the application of silicon and calcium. J Sci Food Agric 100(4):1547–1557

    Article  CAS  PubMed  Google Scholar 

  24. Ashraf M et al (2015) Silicon and potassium nutrition enhances salt adaptation capability of sunflower by improving plant water status and membrane stability. Commun Soil Sci Plant Anal 46(8):991–1005

    Article  CAS  Google Scholar 

  25. Ghassemi-Golezani K, Farhangi-Abriz S (2018) Changes in oil accumulation and fatty acid composition of soybean seeds under salt stress in response to salicylic acid and jasmonic acid. Russ J Plant Physiol 65(2):229–236

    Article  CAS  Google Scholar 

  26. Janmohammadi M, Sabaghnia N, Ahadnezhad A (2015) Impact of silicon dioxide nanoparticles on seedling early growth of lentil (Lens culinaris Medik.) genotypes with various origins. Poljoprivreda i Sumarstvo 61(3): 19

  27. Boldt JK, Locke JC, Altland JE (2018) Silicon accumulation and distribution in petunia and sunflower grown in a rice hull-amended substrate. HortScience 53(5):698–703

    Article  CAS  Google Scholar 

  28. Rao GB, Susmitha P (2017) Silicon uptake, transportation and accumulation in Rice. J Pharmacogn Phytochem 6(6):290–293

    CAS  Google Scholar 

  29. Kleiber T, et al. (2020) Application of selenium and silicon to alleviate short-term drought stress in French marigold (Tagetes patula L.) as a model plant species. Open Chem, 18(1): 1468–1480

  30. Mohaghegh P, Mohammadkhani A, Fadaei A (2015) Effects of Silicon on the growth, ion distribution and physiological mechanisms that alleviate oxidative stress induced by powdery mildew infection in pumpkin (Cucurbita pepo, var. Styriac). J Crop Protection 4(3): 419–429

  31. Vivancos J et al (2016) Identification and characterization of silicon efflux transporters in horsetail (Equisetum arvense). J Plant Physiol 200:82–89

    Article  CAS  PubMed  Google Scholar 

  32. Traversari S et al (2021) Combined effect of silicon and non-thermal plasma treatments on yield, mineral content, and nutraceutical proprieties of edible flowers of Begonia cucullata. Plant Physiol Biochem 166:1014–1021

    Article  CAS  PubMed  Google Scholar 

  33. Soundararajan P et al (2017) Leaf physiological and proteomic analysis to elucidate silicon induced adaptive response under salt stress in Rosa hybrida ‘Rock Fire.’ Int J Mol Sci 18(8):1768

    Article  PubMed  PubMed Central  Google Scholar 

  34. Deshmukh R, Sonah H, Belanger RR (2020) New evidence defining the evolutionary path of aquaporins regulating silicon uptake in land plants. J Exp Bot 71(21):6775–6788

    Article  CAS  PubMed  Google Scholar 

  35. Whitted-Haag B, et al. (2014) Foliar silicon and titanium applications influence growth and quality characteristics of annual bedding plants. The Open Horticulture Journal 7(1):6–15

  36. Chon YS, et al. (2016) Alleviation of salt-induced deleterious effects in chrysanthemum plant and soil by silicon supplement. 화훼연구, 2016. 24(2): 78–88

  37. Cao B-L, Ma Q, Xu K (2020) Silicon restrains drought-induced ROS accumulation by promoting energy dissipation in leaves of tomato. Protoplasma 257(2):537–547

    Article  CAS  PubMed  Google Scholar 

  38. Liu W-S et al (2021) Rare earth elements, aluminium and silicon distribution in the fern Dicranopteris linearis revealed by μPIXE Maia analysis. Ann Bot 128(1):17–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang X et al (2018) Phytolith accumulation in broadleaf and conifer forests of northern China: implications for phytolith carbon sequestration. Geoderma 312:36–44

    Article  CAS  Google Scholar 

  40. Hassanvand F, Nejad AR, Fanourakis D (2019) Morphological and physiological components mediating the silicon-induced enhancement of geranium essential oil yield under saline conditions. Ind Crops Prod 134:19–25

    Article  CAS  Google Scholar 

  41. Islam T, Moore BD, Johnson SN (2020) Novel evidence for systemic induction of silicon defences in cucumber following attack by a global insect herbivore. Ecological Entomology 45(6):1373–1381

    Article  Google Scholar 

  42. Crusciol CAC et al (2018) Methods and extractants to evaluate silicon availability for sugarcane. Sci Rep 8(1):1–14

    Article  CAS  Google Scholar 

  43. Liu B, Soundararajan P, Manivannan A (2019) Mechanisms of silicon-mediated amelioration of salt stress in plants. Plants 8(9):307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zama EF et al (2018) Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in spinach (Spinacia oleracean) and improvement in the plant growth. J Clean Prod 189:386–395

    Article  CAS  Google Scholar 

  45. da Silva DPC, et al. (2020) Effectiveness of silicon sources for in vitro development of gerbera. Plant Cell, Tissue and Organ Culture (PCTOC), 141(1): 77–85

  46. Frantz JM et al (2005) Silicon is deposited in leaves of New Guinea impatiens. Plant Health Progress 6(1):15

    Article  Google Scholar 

  47. Azeem M et al. (2015) Efficacy of silicon priming and fertigation to modulate seedling’s vigor and ion homeostasis of wheat (Triticum aestivum L.) under saline environment. Environ Sci Pollut Res 22(18): 14367–14371

  48. Sahebi M, Hanafi MM, Azizi P (2016) Application of silicon in plant tissue culture. In Vitro Cellular & Developmental Biology-Plant 52(3):226–232

    Article  CAS  Google Scholar 

  49. McGillicuddy N et al (2018) Examining the sources of variability in cell culture media used for biopharmaceutical production. Biotech Lett 40(1):5–21

    Article  CAS  Google Scholar 

  50. Zali MR, et al. (2020) The role of silicon to increase arsenic tolerance in rice (Oryza sativa L.) seedlings by reinforcing anti-oxidative defense. Bioagro 32(3): 159–168

  51. Tsukagoshi S, Shinohara Y (2020) Nutrition and nutrient uptake in soilless culture systems. Plant Factory. Elsevier, pp 221–229

    Chapter  Google Scholar 

  52. Sattar A et al (2017) Physiological response of late sown wheat to exogenous application of silicon. Cereal Research Communications 45(2):202–213

    Article  CAS  Google Scholar 

  53. Amin M et al (2018) Influence of silicon fertilization on maize performance under limited water supply. Silicon 10(2):177–183

    Article  CAS  Google Scholar 

  54. Bhat JA et al (2019) Role of silicon in mitigation of heavy metal stresses in crop plants. Plants 8(3):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jeer M et al (2021) Exogenous application of different silicon sources and potassium reduces pink stem borer damage and improves photosynthesis, yield and related parameters in wheat. Silicon 13(3):901–910

    Article  CAS  Google Scholar 

  56. Sivanesan I, Jeong BR (2014) Silicon promotes adventitious shoot regeneration and enhances salinity tolerance of Ajuga multiflora Bunge by altering activity of antioxidant enzyme. The Scientific World Journal 2014

  57. Al-Mayahi AMW (2016) Effect of silicon (Si) application on Phoenix dactylifera L. growth under drought stress induced by polyethylene glycol (PEG) in vitro. Am J Plant Sci 7(13): 1711–1728

  58. Demirer GS et al (2021) Nanotechnology to advance CRISPR–Cas genetic engineering of plants. Nat Nanotechnol 16(3):243–250

    Article  CAS  PubMed  Google Scholar 

  59. Saleem M, Hu J, Jousset A (2019) More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst 50:145–168

    Article  Google Scholar 

  60. Chen K et al (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    Article  CAS  PubMed  Google Scholar 

  61. Akinyele D, Rayudu R, Nair N (2017) Life cycle impact assessment of photovoltaic power generation from crystalline silicon-based solar modules in Nigeria. Renewable Energy 101:537–549

    Article  CAS  Google Scholar 

  62. Tripathi D, Raikhy G, Kumar D (2019) Chemical elicitors of systemic acquired resistance—Salicylic acid and its functional analogs. Current Plant Biology 17:48–59

    Article  Google Scholar 

  63. Jiang N et al (2019) Transcriptome analysis reveals new insights into the bacterial wilt resistance mechanism mediated by silicon in tomato. Int J Mol Sci 20(3):761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moldes CA et al (2016) Occurrence of powdery mildew disease in wheat fertilized with increasing silicon doses: a chemometric analysis of antioxidant response. Acta Physiol Plant 38(8):1–9

    Article  CAS  Google Scholar 

  65. Hussain A et al (2019) Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environ Sci Pollut Res 26(8):7579–7588

    Article  CAS  Google Scholar 

  66. Yin L et al (2016) Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in S orghum bicolor L. Plant, Cell Environ 39(2):245–258

    Article  CAS  PubMed  Google Scholar 

  67. Abe J (2019) Silicon deposition in leaf trichomes of Cucurbitaceae horticultural plants: a short report. Am J Plant Sci 10(3):486–490

    Article  CAS  Google Scholar 

  68. Kačániová M, et al. (2020) Antimicrobial potential of different medicinal plants against food industry pathogens. Slovak Journal of Food Sciences 14(1):494–500

  69. Li Y (2020) The effects of Silicon nutrition on hydroponically grown lettuce, bok choy and basil. Rutgers The State University of New Jersey, School of Graduate Studies, p 27669268

  70. Song A et al (2016) The role of silicon in enhancing resistance to bacterial blight of hydroponic-and soil-cultured rice. Sci Rep 6(1):1–13

    Google Scholar 

  71. D’Imperio M et al (2018) NaCl stress enhances silicon tissue enrichment of hydroponic “baby leaf” chicory under biofortification process. Sci Hortic 235:258–263

    Article  Google Scholar 

  72. Talukdar P et al (2019) Genotypic differences in shoot silicon concentration and the impact on grain arsenic concentration in rice. J Plant Nutr Soil Sci 182(2):265–276

    Article  CAS  Google Scholar 

  73. Martins JPR, et al. (2019) Sources and concentrations of silicon modulate the physiological and anatomical responses of Aechmea blanchetiana (Bromeliaceae) during in vitro culture. Plant Cell, Tissue and Organ Culture (PCTOC) 137(2):397–410

  74. Janeeshma E, Puthur JT, Ahmad P (2021) Silicon distribution in leaves and roots of rice and maize in response to cadmium and zinc toxicity and the associated histological variations. Physiol Plant 173(1):460–471

    CAS  PubMed  Google Scholar 

  75. Wu J et al (2019) Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants. J Hazard Mater 364:581–590

    Article  CAS  PubMed  Google Scholar 

  76. Liang Y, et al. (2005) Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany 53(1): 29–37

  77. Dufey I et al (2014) Silicon application in cultivated rices (Oryza sativa L and Oryza glaberrima Steud) alleviates iron toxicity symptoms through the reduction in iron concentration in the leaf tissue. J Agron Crop Sci 200(2):132–142

    Article  CAS  Google Scholar 

  78. Ma JF et al (2007) Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol 145(3):919–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wangkaew B (2019) Silicon concentration and expression of silicon transport genes in two Thai rice Varieties. CMU J Nat Sci 18:358–372

    Google Scholar 

  80. Lata-Tenesaca LF et al (2022) Forms of application of silicon in quinoa and benefits involved in the association between productivity with grain biofortification 12(1):1–9

    Google Scholar 

  81. Garcia Neto J et al (2022) Silicon leaf spraying increases biofortification production, ascorbate content and decreases water loss post-harvest from land cress and chicory leaves. J Plant Nutr 45(8):1283–1290

    Article  CAS  Google Scholar 

  82. Ergin S, et al. (2014) Effects of ascorbic acid application in strawberry plants during heat stress. 2014. 1(Özel Sayı-2): 1486–1491

  83. Valentinuzzi F, et al. (2017) Assessment of silicon biofortification and its effect on the content of bioactive compounds in strawberry (Fragaria× ananassa'Elsanta') fruits. in VIII International Symposium on Mineral Nutrition of Fruit Crops 1217

  84. Thakral V et al (2021) Role of silicon under contrasting biotic and abiotic stress conditions provides benefits for climate smart crop** 189:104545

    CAS  Google Scholar 

  85. Kumar S, et al. (2020) Imaging and quantifying homeostatic levels of intracellular silicon in diatoms. Sci Adv 6(42): p. eaaz7554

  86. Ma JF et al (2006) A silicon transporter in rice. Nature 440(7084):688–691

    Article  CAS  PubMed  Google Scholar 

  87. Azeem S, et al. (2016) Quantitative proteomics study on Lsi1 in regulation of rice (Oryza sativa L.) cold resistance. Plant Growth Regulation 78(3): 307–323

  88. Qiu W et al (2018) Structure and activity of lipid bilayer within a membrane-protein transporter. Proc Natl Acad Sci 115(51):12985–12990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guerriero G et al (2019) Identification of the aquaporin gene family in Cannabis sativa and evidence for the accumulation of silicon in its tissues. Plant Sci 287:110167

    Article  CAS  PubMed  Google Scholar 

  90. Singh RK et al (2020) Versatile roles of aquaporin in physiological processes and stress tolerance in plants. Plant Physiol Biochem 149:178–189

    Article  CAS  PubMed  Google Scholar 

  91. Đurić MJ et al (2021) Molecular characterization and expression of four aquaporin genes in Impatiens walleriana during drought stress and recovery. Plants 10(1):154

    Article  PubMed  PubMed Central  Google Scholar 

  92. Vega I et al (2019) Silicon improves the production of high antioxidant or structural phenolic compounds in barley cultivars under aluminum stress. Agronomy 9(7):388

    Article  CAS  Google Scholar 

  93. Sun H et al (2018) Isolation and functional characterization of CsLsi2, a cucumber silicon efflux transporter gene. Ann Bot 122(4):641–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jung J, et al. (2017) Characterization of the Lsi1 homologs in Cucurbita moschata and C. ficifolia for breeding of stock cultivars used for bloomless cucumber production. Horticult Sci Technol 35(3): 333–343

  95. Bosnic P et al (2018) Silicon mediates sodium transport and partitioning in maize under moderate salt stress. Environ Exp Bot 155:681–687

    Article  CAS  Google Scholar 

  96. Kostic L et al (2017) Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil 419(1):447–455

    Article  CAS  Google Scholar 

  97. Swain R, Rout GR (2020) Silicon mediated alleviation of salinity stress regulated by silicon transporter genes (Lsi1 and Lsi2) in Indica rice. Brazilian Archives Biol Technol 63

  98. Jain S et al (2021) Exogenous addition of silicon alleviates metsulfuron methyl induced stress in wheat seedlings. Plant Physiol Biochem 167:705–712

    Article  CAS  PubMed  Google Scholar 

  99. Gaur S et al (2020) Fascinating impact of silicon and silicon transporters in plants: A review. Ecotoxicol Environ Saf 202:110885

    Article  CAS  PubMed  Google Scholar 

  100. Mundada PS, et al. (2021) Characterization of influx and efflux silicon transporters and understanding their role in the osmotic stress tolerance in finger millet (Eleusine coracana (L.) Gaertn.). Plant Physiol Biochem 162 677–689

  101. Vatansever R et al (2017) Genome-wide exploration of silicon (Si) transporter genes, Lsi1 and Lsi2 in plants; insights into Si-accumulation status/capacity of plants. Biometals 30(2):185–200

    Article  CAS  PubMed  Google Scholar 

  102. Maldonado M, et al. (2020) Cooperation between passive and active silicon transporters clarifies the ecophysiology and evolution of biosilicification in sponges. Sci Adv 6(28): eaba9322

  103. Jadhao KR, Bansal A, Rout GR (2020) Silicon amendment induces synergistic plant defense mechanism against pink stem borer (Sesamia inferens Walker.) in finger millet (Eleusine coracana Gaertn.). Sci Rep 10(1): 1–15

  104. Khan E, Gupta M (2018) Arsenic–silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Sci Rep 8(1): 1–16

  105. Bokor B et al (2017) Expression of genes for Si uptake, accumulation, and correlation of Si with other elements in ionome of maize kernel. Front Plant Sci 8:1063

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zia A et al (2021) Biochemical responses of wheat to silicon application under salinity. J Plant Nutr Soil Sci 184(2):255–262

    Article  CAS  Google Scholar 

  107. Jia Z et al (2021) Genome-wide association map** identifies HvNIP2; 2/HvLsi6 accounting for efficient boron transport in barley. Physiol Plant 171(4):809–822

    Article  CAS  PubMed  Google Scholar 

  108. Hussain S, et al. (2021) Foliar application of silicon improves stem strength under low light stress by regulating lignin biosynthesis genes in soybean (Glycine max (L.) Merr.). J Hazardous Mater 401: 123256

  109. Wang H-S et al (2015) Identification of two cucumber putative silicon transporter genes in Cucumis sativus. J Plant Growth Regul 34(2):332–338

    Article  Google Scholar 

  110. Sabir F et al (2020) Insights into the selectivity mechanisms of grapevine NIP aquaporins. Int J Mol Sci 21(18):6697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. García-Gaytán V et al (2019) Polymerized silicon (SiO2· nH2O) in equisetum arvense: potential nanoparticle in crops. J Chil Chem Soc 64(1):4298–4302

    Article  Google Scholar 

  112. Kaur H, Greger M (2019) A review on Si uptake and transport system. Plants 8(4):81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mitani-Ueno N, Yamaji N, Ma JF (2011) Silicon efflux transporters isolated from two pumpkin cultivars contrasting in Si uptake. Plant Signal Behav 6(7):991–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hosseini SA et al (2017) Induction of Barley Silicon Transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated Starch and ABA Homeostasis under Osmotic stress and Concomitant Potassium Deficiency. Front Plant Sci 8:1359

    Article  PubMed  PubMed Central  Google Scholar 

  115. Talakayala A, Ankanagari S, Garladinne M (2020) Role of silicon transportation through aquaporin genes for abiotic stress tolerance in plants. Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives p. 622–634

  116. Zhu Y et al (2020) Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiol Biochem 156:209–220

    Article  CAS  PubMed  Google Scholar 

  117. Sun Y et al (2021) Effects of exogenous silicon on maize seed germination and seedling growth. Sci Rep 11(1):1–13

    Google Scholar 

  118. Gómez-Merino FC et al (2020) Silicon flow from root to shoot in pepper: a comprehensive in silico analysis reveals a potential linkage between gene expression and hormone signaling that stimulates plant growth and metabolism. PeerJ 8:e10053

    Article  PubMed  PubMed Central  Google Scholar 

  119. Yamaji N, Ma JF (2007) Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiol 143(3):1306–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hu AY et al (2018) Silicon accumulated in the shoots results in down-regulation of phosphorus transporter gene expression and decrease of phosphorus uptake in rice. Plant Soil 423(1):317–325

    Article  CAS  Google Scholar 

  121. Chaiwong N, et al. (2020) Interplay between silicon and iron signaling pathways to regulate silicon transporter Lsi1 expression in rice. Front Plant Science : 1065

  122. Yan G et al (2021) Root silicon deposition and its resultant reduction of sodium bypass flow is modulated by OsLsi1 and OsLsi2 in rice. Plant Physiol Biochem 158:219–227

    Article  CAS  PubMed  Google Scholar 

  123. Mitani N et al (2009) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21(7):2133–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Montpetit J et al (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79(1):35–46

    Article  CAS  PubMed  Google Scholar 

  125. Tamai K, Ma JF (2008) Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant. Plant Soil 307(1):21–27

    Article  CAS  Google Scholar 

  126. Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20(7):435–442

    Article  CAS  PubMed  Google Scholar 

  127. Sakurai G et al (2015) In silico simulation modeling reveals the importance of the Casparian strip for efficient silicon uptake in rice roots. Plant Cell Physiol 56(4):631–639

    Article  CAS  PubMed  Google Scholar 

  128. Mandlik R et al (2020) Significance of silicon uptake, transport, and deposition in plants. J Exp Bot 71(21):6703–6718

    Article  CAS  PubMed  Google Scholar 

  129. Lux A, et al. (2020) Silicification of root tissues. Plants 9(1): 111

  130. Vaculík M et al (2020) Alleviation mechanisms of metal (loid) stress in plants by silicon: a review. J Exp Bot 71(21):6744–6757

    Article  PubMed  Google Scholar 

  131. Secchi F, Pagliarani C, Zwieniecki MA (2017) The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant, Cell Environ 40(6):858–871

    Article  CAS  PubMed  Google Scholar 

  132. Frew A et al (2018) The role of silicon in plant biology: a paradigm shift in research approach. Ann Bot 121(7):1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Khan MIR et al (2021) The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. Plant Physiol Biochem 162:36–47

    Article  CAS  PubMed  Google Scholar 

  134. Coskun D et al (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072

    Article  PubMed  PubMed Central  Google Scholar 

  135. Yamaji N, Ma JF (2014) The node, a hub for mineral nutrient distribution in graminaceous plants. Trends Plant Sci 19(9):556–563

    Article  CAS  PubMed  Google Scholar 

  136. Cai Y et al (2020) Cd accumulation, biomass and yield of rice are varied with silicon application at different growth phases under high concentration cadmium-contaminated soil. Chemosphere 242:125128

    Article  CAS  PubMed  Google Scholar 

  137. Yamaji N et al (2015) Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice. Proc Natl Acad Sci 112(36):11401–11406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yamaji N, Ma JF (2017) Node-controlled allocation of mineral elements in Poaceae. Curr Opin Plant Biol 39:18–24

    Article  CAS  PubMed  Google Scholar 

  139. Song A, et al. (2014) The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS One 9(11): e113782

  140. Lunde C, et al. (2000) The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis 408(6812): 613-615

  141. Rastogi A, et al. (2021) Does silicon really matter for the photosynthetic machinery in plants…? 169: 40–48

  142. Brunings A et al (2009) Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae 155(2):161–170

    CAS  Google Scholar 

  143. Ghareeb H et al (2011) Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect 75(3):83–89

    CAS  Google Scholar 

  144. Manivannan A, Ahn Y-KJFiPS (2017) Silicon regulates potential genes involved in major physiological processes in plants to combat stress 8: 1346

  145. Khattab H, et al. (2014) Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice 58(2): 265–273

  146. Liu P et al (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L 111:42–51

    CAS  Google Scholar 

  147. Rodrigues FÁ et al (2004) Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance 94(2):177–183

    CAS  Google Scholar 

  148. Hassan H et al (2021) Roles of Si and SiNPs in improving thermotolerance of wheat photosynthetic machinery via upregulation of PsbH, PsbB and PsbD genes encoding PSII core proteins. Horticulturae 7(2):16

    Article  Google Scholar 

  149. Zhang Y et al (2018) Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. J Integr Agric 17(10):2151–2159

    Article  CAS  Google Scholar 

  150. Ghareeb H et al (2011) Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol Mol Plant Pathol 75(3):83–89

    Article  CAS  Google Scholar 

  151. Brunings A et al (2009) Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae. Annals of Applied Biology 155(2):161–170

    Article  CAS  Google Scholar 

  152. ** technology 10(5):885

    CAS  Google Scholar 

  153. Sahebi M, et al. (2015) Importance of silicon and mechanisms of biosilica formation in plants. BioMed research international 2015

  154. Shahrtash M (2017) Effects of silicon and nitrogen fertilization on growth, yield, and leaf rust disease development in wheat

  155. Bashir MH, AM, Nawaz MS, Khan AZ, Aziz S, Ullah F, Qasim M (2022) Characterization and advancement of microsatellite (SSR) markers for various stresses in wheat. Int J Agri Biosci 11(2): 8

  156. Naeem A et al (2018) Silicon nutrition lowers cadmium content of wheat cultivars by regulating transpiration rate and activity of antioxidant enzymes. Environ Pollut 242:126–135

    Article  CAS  PubMed  Google Scholar 

  157. Dong Q et al (2019) Silicon amendment reduces soil Cd availability and Cd uptake of two Pennisetum species. Int J Environ Res Public Health 16(9):1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Greger M, Landberg T, Vaculík M (2018) Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants 7(2):41

    Article  PubMed  PubMed Central  Google Scholar 

  159. Alsaeedi A et al (2019) Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol Biochem 139:1–10

    Article  CAS  PubMed  Google Scholar 

  160. El-Serafy RS et al (2021) Seed priming with silicon as a potential to increase salt stress tolerance in Lathyrus odoratus. Plants 10(10):2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. de Sousa TP et al (2018) Bioagents and silicon promoting fast early upland rice growth. Environ Sci Pollut Res 25(4):3657–3668

    Article  Google Scholar 

  162. Avila RG et al (2020) Silicon supplementation improves tolerance to water deficiency in sorghum plants by increasing root system growth and improving photosynthesis 12(11):2545–2554

    CAS  Google Scholar 

  163. Shamshiripour M, et al. (2022) Optimal concentrations of silicon enhance the growth of soybean (Glycine Max L.) cultivars by improving nodulation, root system architecture, and soil biological properties 14(10): 5333–5345

  164. Sivanesan I, Park SW (2014) The role of silicon in plant tissue culture. Front Plant Sci 5:571

    Article  PubMed  PubMed Central  Google Scholar 

  165. Alves Lara Silva Rezende R et al. (2017) Effects of silicon on antioxidant enzymes, CO2, proline and biological activity of in vitro-grown cape gooseberry under salinity stress. Austral J Crop Sci 11(4): 438–446

  166. Farooq MA et al (2019) Protective role of silicon (Si) against combined stress of salinity and boron (B) toxicity by improving antioxidant enzymes activity in rice. SILICON 11(4):2193–2197

    Article  CAS  Google Scholar 

  167. Sun W-J et al (2012) Exogenous cinnamic acid regulates antioxidant enzyme activity and reduces lipid peroxidation in drought-stressed cucumber leaves. Acta Physiol Plant 34(2):641–655

    Article  CAS  Google Scholar 

  168. Cao Y-Y et al (2014) Exogenous sucrose increases chilling tolerance in cucumber seedlings by modulating antioxidant enzyme activity and regulating proline and soluble sugar contents. Sci Hortic 179:67–77

    Article  CAS  Google Scholar 

  169. Shi Y et al (2016) Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Front Plant Sci 7:196

    Article  PubMed  PubMed Central  Google Scholar 

  170. Jang S-W et al (2018) Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L. BMC Plant Biol 18(1):1–12

    Article  Google Scholar 

  171. Maghsoudi K, Arvin MJ, Ashraf M (2020) Mitigation of arsenic toxicity in wheat by the exogenously applied salicylic acid, 24-epi-brassinolide and silicon. J Soil Sci Plant Nutr 20(2):577–588

    Article  CAS  Google Scholar 

  172. Khaliq A et al (2016) Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth, photosynthesis, and suppressing Ni uptake and oxidative stress. Archives of Agronomy and Soil Science 62(5):633–647

    Article  CAS  Google Scholar 

  173. Ali M, et al. (2021) Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiol Biochem 158: 208–218

  174. Kim Y-H et al (2017) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci 8:510

    Article  PubMed  PubMed Central  Google Scholar 

  175. Iwasaki K et al (2002) Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). J Plant Physiol 159(2):167–173

    Article  CAS  Google Scholar 

  176. Faria J et al (2021) Aluminium, Iron and Silicon Subcellular Redistribution in Wheat Induced by Manganese Toxicity. Appl Sci 11(18):8745

    Article  CAS  Google Scholar 

  177. Feng J-P, Shi Q-H, Wang X-F (2009) Effects of exogenous silicon on photosynthetic capacity and antioxidant enzyme activities in chloroplast of cucumber seedlings under excess manganese. Agricultural Sciences in China 8(1):40–50

    Article  CAS  Google Scholar 

  178. de Oliveira RLL et al (2019) Silicon mitigates manganese deficiency stress by regulating the physiology and activity of antioxidant enzymes in sorghum plants. J Soil Sci Plant Nutr 19(3):524–534

    Article  Google Scholar 

  179. Ahmad F, et al. (2007) Effect of silicon application on wheat (Triticum aestivum L.) growth under water deficiency stress. Emirates J Food Agricult : 1–7

  180. Maghsoudi K, Emam Y, Ashraf M (2016) Foliar application of silicon at different growth stages alters growth and yield of selected wheat cultivars. J Plant Nutr 39(8):1194–1203

    Article  CAS  Google Scholar 

  181. Fiala R et al (2021) Effect of silicon on the young maize plants exposed to nickel stress. Plant Physiol Biochem 166:645–656

    Article  CAS  PubMed  Google Scholar 

  182. Hajiboland R et al (2018) Effect of silicon supplementation on growth and metabolism of strawberry plants at three developmental stages. N Z J Crop Hortic Sci 46(2):144–161

    Article  Google Scholar 

  183. Hussain S et al (2021) Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiol Biochem 159:43–52

    Article  CAS  PubMed  Google Scholar 

  184. Morato de Moraes DH, et al. (2020) Combined effects of induced water deficit and foliar application of silicon on the gas exchange of tomatoes for processing. Agronomy 10(11): 1715

  185. Abdelaal KA, Mazrou YS, Hafez YM (2020) Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plants 9(6):733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Shahzad S et al. (2021) Foliar application of silicon enhances growth, flower yield, quality and postharvest life of tuberose (Polianthes tuberosa L.) under saline conditions by improving antioxidant defense mechanism. Silicon, 1–8

  187. Fatemi H, Esmaiel Pour B, Rizwan M (2021) Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (Coriandrum sativum L.) plants grown in lead (Pb)-spiked soil. Environmental Science and Pollution Research, 28(2): 1417–1425

  188. Parveen N, Ashraf M (2010) Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (Zea mays L.) cultivars grown hydroponically. Pak J Bot 42(3): 1675–1684

  189. Soylemezoglu G et al. (2009) Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Scientia Horticulturae 123(2): 240–246

  190. Mateos-Naranjo E, Andrades-Moreno L, Davy AJ (2013) Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiol Biochem 63:115–121

    Article  CAS  PubMed  Google Scholar 

  191. Ashraf M, et al. (2010) Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant and Soil 326(1): p. 381–391

  192. Bybordi A, Tabatabaei S (2012) Effect of different ratios of ammonium: nitrate on photosynthesis and fatty acid composition in canola (Brassica napus L.) under Saline Conditions. Isfahan University of Technology-Journal of Crop Production and Processing 2(3): 83–92

  193. Ahmed M, Khurshid Y (2011) Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agric Water Manag 98(12):1808–1812

    Article  Google Scholar 

  194. Shen X et al (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167(15):1248–1252

    Article  CAS  PubMed  Google Scholar 

  195. Mditshwa A et al. (2013) The potential of postharvest silicon dips to regulate phenolics in citrus peel as a method to mitigate chilling injury in lemons. African J Biotechnol 12(13):1482–1489

  196. Liu J-J et al (2009) Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. Agricultural Sciences in China 8(9):1075–1086

    Article  CAS  Google Scholar 

  197. Liang Y et al (2008) Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ Exp Bot 64(3):286–294

    Article  CAS  Google Scholar 

  198. Song A, et al. (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mater 172(1): 74–83

  199. Zeng F-R et al (2011) Alleviation of chromium toxicity by silicon addition in rice plants. Agricultural Sciences in China 10(8):1188–1196

    Article  CAS  Google Scholar 

  200. Doncheva S et al (2009) Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environ Exp Bot 65(2–3):189–197

    Article  CAS  Google Scholar 

  201. Tahir MA, et al. (2006) Beneficial effects of silicon in wheat (Triticum aestivum L.) under salinity stress. Pakistan J Bot 38(5): 1715–1722

  202. Kalteh M, et al. (2018) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4(3):49–55

  203. Al Murad M, Khan AL, Muneer S (2020) Silicon in horticultural crops: cross-talk, signaling, and tolerance mechanism under salinity stress. Plants 9(4): 460

  204. Mahmoud LM et al (2020) Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. S Afr J Bot 132:155–163

    Article  CAS  Google Scholar 

  205. Li H et al (2015) Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol Plant 37(4):1–9

    Article  Google Scholar 

  206. Bolbol Sharifloo A, Yousefi Rad M (2018) Assessment effect of silicon on physiological and biochemical traits of corn (Zea mays L.) Under Salinity Stress Conditions. J Crop Nutrit Sci 4(2): 20–31

  207. Mushtaq A et al (2019) Influence of silicon sources and controlled release fertilizer on the growth of wheat cultivars of Balochistan under salt stress. Pak J Bot 51(5):1561–1567

    Article  CAS  Google Scholar 

  208. Yan G et al (2020) Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern. Front Plant Sci 11:260

    Article  PubMed  PubMed Central  Google Scholar 

  209. Ahmad R, Zaheer SH, Ismail S (1992) Role of silicon in salt tolerance of wheat (Triticum aestivum L.). Plant Science 85(1): 43–50

  210. Abbas T et al (2015) Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiol Plant 37(2):1–15

    Article  CAS  Google Scholar 

  211. Farouk S, Elhindi KM, Alotaibi MA (2020) Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicology and Environmental Safety 206: 111396

  212. Khoshgoftarmanesh AH et al (2011) Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. Sustainable Agriculture, vol 2. Springer, pp 219–249

    Google Scholar 

  213. Aprile A, De Bellis L (2020) Editorial for special issue “Heavy metals accumulation, toxicity, and detoxification in plants”. Multidisciplinary Digital Publishing Institute. p. 4103

  214. Kumar V, Singh J, Kumar P (2019) Heavy metals accumulation in crop plants: Sources, response mechanisms, stress tolerance and their effects. Contaminants in agriculture and environment: health risks and remediation 1:38

    Google Scholar 

  215. Gill M (2014) Heavy metal stress in plants: a review. Int J Adv Res 2(6):1043–1055

    Google Scholar 

  216. Tripathi DK, et al. (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochemist 96: 189–198

  217. Impa S, Nadaradjan S, Jagadish S (2012) Drought stress induced reactive oxygen species and anti-oxidants in plants. Abiotic stress responses in plants. Springer, pp 131–147

    Chapter  Google Scholar 

  218. Alam H et al (2021) Negative impact of long-term exposure of salinity and drought stress on native Tetraena mandavillei L. Physiol Plant 172(2):1336–1351

    Article  CAS  PubMed  Google Scholar 

  219. Tiwari RK et al (2021) Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiol Plant 172(2):1212–1226

    Article  CAS  PubMed  Google Scholar 

  220. Ma D et al (2016) Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. J Plant Growth Regul 35(1):1–10

    Article  CAS  Google Scholar 

  221. Ali N et al (2018) Regulatory role of silicon in mediating differential stress tolerance responses in two contrasting tomato genotypes under osmotic stress. Front Plant Sci 9:1475

    Article  PubMed  PubMed Central  Google Scholar 

  222. Shen X et al (2014) Silicon mitigates ultraviolet-B radiation stress on soybean by enhancing chlorophyll and photosynthesis and reducing transpiration. J Plant Nutr 37(6):837–849

    Article  CAS  Google Scholar 

  223. Pan T et al (2021) Silicon enhances plant resistance of rice against submergence stress. Plants 10(4):767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Banerjee A et al (2021) Silicon nanoparticle-pulsing mitigates fluoride stress in rice by fine-tuning the ionomic and metabolomic balance and refining agronomic traits. Chemosphere 262:127826

    Article  CAS  PubMed  Google Scholar 

  225. Datnoff LE, Rodrigues F (2005) The role of silicon in suppressing rice diseases. APSnet Features

  226. Coskun D et al (2019) The controversies of silicon’s role in plant biology. New Phytol 221(1):67–85

    Article  PubMed  Google Scholar 

  227. Law C, Exley C (2011) New insight into silica deposition in horsetail (Equisetum arvense). BMC Plant Biol 11(1):1–9

    Article  Google Scholar 

  228. Kim SG et al (2002) Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92(10):1095–1103

    Article  PubMed  Google Scholar 

  229. Rebitanim NA, Rebitanim NZ, Tajudin NS (2015) Impact of silicon in managing important rice diseases: blast, sheath blight, brown spot and grain discoloration. Int J Agron Agric Res 6:71–85

    Google Scholar 

  230. Rodrigues FA et al (2015) Silicon potentiates host defense mechanisms against infection by plant pathogens. Silicon and plant diseases. Springer, pp 109–138

    Chapter  Google Scholar 

  231. Rijal S, Devkota Y (2020) A review on various management method of rice blast disease. Malaysian Journal of Sustainable Agriculture 4(1):14–18

    Google Scholar 

  232. Seebold K Jr et al (2004) Effects of silicon and fungicides on the control of leaf and neck blast in upland rice. Plant Dis 88(3):253–258

    Article  CAS  PubMed  Google Scholar 

  233. Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol Mol Plant Pathol 66(3):108–115

    Article  Google Scholar 

  234. Shetty R et al (2021) Site-specific, silicon-induced structural and molecular defence responses against powdery mildew infection in roses. Pest Manag Sci 77(10):4545–4554

    Article  CAS  PubMed  Google Scholar 

  235. Huber D, Römheld V, Weinmann M (2012) Relationship between nutrition, plant diseases and pests. Marschner’s mineral nutrition of higher plants. Elsevier, pp 283–298

    Chapter  Google Scholar 

  236. Menz MH, et al. (2019) Mechanisms and consequences of partial migration in insects. Front Ecol Evol 403

  237. Abdullahi G et al (2018) Damage potential of Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae) on cocoa beans: Effect of initial adult population density and post infestation storage time. J Stored Prod Res 75:1–9

    Article  Google Scholar 

  238. Debona D, Rodrigues FA, Datnoff LE (2017) Silicon’s role in abiotic and biotic plant stresses. Annu Rev Phytopathol 55:85–107

    Article  CAS  PubMed  Google Scholar 

  239. Shahriar SA, et al. (2020) Rice blast disease. Ann Res Rev Biol:50–64

  240. Surovy MZ, et al. (2020) Modulation of nutritional and biochemical properties of wheat grains infected by blast fungus Magnaporthe oryzae Triticum pathotype. Front Microbiol:1174

  241. Rodrigues FA et al (2015) Silicon control of foliar diseases in monocots and dicots. Silicon and plant diseases. Springer, pp 67–108

    Chapter  Google Scholar 

  242. Artyszak A (2018) Effect of silicon fertilization on crop yield quantity and quality—A literature review in Europe. Plants 7(3):54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Cuong TX et al (2017) Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Sci 24(5):283–290

    Article  Google Scholar 

  244. Liang Y et al (2005) Effects of foliar-and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol 54(5):678–685

    Article  CAS  Google Scholar 

  245. Fauteux F et al (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249(1):1–6

    Article  CAS  PubMed  Google Scholar 

  246. Souza A, et al. (2015) Enzyme-induced defense response in the suppression of rice leaf blast (Magnaporthe Oryzae) by silicon fertilization and bioagents. Embrapa Arroz e Feijão-Artigo em periódico indexado (ALICE)

  247. Islam W et al (2020) Silicon-mediated plant defense against pathogens and insect pests. Pestic Biochem Physiol 168:104641

    Article  CAS  PubMed  Google Scholar 

  248. Rivarez MP, Parac E (2019) Rapid molecular detection and transmission of bacterial leaf streak pathogen, xanthomonas Oryzae Pv. Oryzicola, in rice seeds. Biosciences Biotechnology Research Asia 16(3): 509–520

  249. Sapkota S, Mergoum M, Liu Z (2020) The translucens group of Xanthomonas translucens: Complicated and important pathogens causing bacterial leaf streak on cereals. Mol Plant Pathol 21(3):291–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Jiang N, et al. (2020) Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)—an updated review. Rice 13(1): 1–12

Download references

Acknowledgements

The authors would like to thank Deanship of Scientific Research in King Saud University for funding and supporting this research through the initiative of DSR Graduate Students Research Support (GSR).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, comprehensive writing, reviewing, figure generation, and manuscript preparation, Syed Riaz Ahmed. and Md.Mahadi Hasan., Muhammad Mubashar Zafar; writing and review, Syed Riaz Ahmed., Zunaira Anwar.; Umar Shahbaz., Aqsa Ijaz., Muhammad Sayyam Tariq., Usman Zulfiqar., Nadiyah M. Alabdallah., and Md.Mahadi Hasan. Writing, review, and figure generation, Zunaira Anwar., Hina Firdous, Milan Skalicky., Marian Brestic., M.A., Moodi Saham Alsubeie., Tafseer Zahra and Md.Mahadi Hasan. editing, Milan Skalicky. and Marian Brestic. Proof read, Hassan Mujtaba., Final review and approval,, Abdul Razzaq., and Muhammad Mubashar Zafar. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Abdul Razzaq or Muhammad Mubashar Zafar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

The authors declare that there was no Ethics problem.

Consent to Participate

The authors declare their consent to participate.

Consent for Publication

The authors declare their consent to publication.

Research Involvement with Human Participants/ or Animals

The research does not involve human and animal participants.

Informed Consent

I have read and I understand the provided information and have granted permission to ask the questions. I understand my participation in the research and liable to produce the given information at any stage.

Conflicts of Interest

The authors declare that they have no conflicts of interest for the publication of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S.R., Anwar, Z., Shahbaz, U. et al. Potential Role of Silicon in Plants Against Biotic and Abiotic Stresses. Silicon 15, 3283–3303 (2023). https://doi.org/10.1007/s12633-022-02254-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02254-w

Keywords

Navigation