Log in

Technical factors affecting the performance of anion exchange membrane water electrolyzer

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Anion exchange membrane (AEM) electrolysis is a promising membrane-based green hydrogen production technology. However, AEM electrolysis still remains in its infancy, and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers. Therefore, breaking through the technical barriers of AEM electrolyzers is critical. On the basis of the analysis of the electrochemical performance tested in a single cell, electrochemical impedance spectroscopy, and the number of active sites, we evaluated the main technical factors that affect AEM electrolyzers. These factors included catalyst layer manufacturing (e.g., catalyst, carbon black, and anionic ionomer) loadings, membrane electrode assembly, and testing conditions (e.g., the KOH concentration in the electrolyte, electrolyte feeding mode, and operating temperature). The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed. The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons, ions, and gas-phase products involved in electrolysis. Based on the study results, the performance and stability of AEM electrolyzers were significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.X. Yang, P. Li, X.B. Zheng, et al., Anion-exchange membrane water electrolyzers and fuel cells, Chem. Soc. Rev., 51(2022), No. 23, p. 9620.

    Article  CAS  Google Scholar 

  2. X. Liu, G.Y. Liu, J.L. Xue, X.D. Wang, and Q.F. Li, Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1073.

    Article  CAS  Google Scholar 

  3. J.X. Guo, Y. Zheng, Z.P. Hu, et al., Direct seawater electrolysis by adjusting the local reaction environment of a catalyst, Nat. Energy, 8(2023), No. 3, p. 264.

    CAS  Google Scholar 

  4. W.M. Tong, M. Forster, F. Dionigi, et al., Electrolysis of low-grade and saline surface water, Nat. Energy, 5(2020), No. 5, p. 367.

    Article  CAS  Google Scholar 

  5. N.Y. Du, C. Roy, R. Peach, M. Turnbull, S. Thiele, and C. Bock, Anion-exchange membrane water electrolyzers, Chem. Rev., 122(2022), No. 13, p. 11830.

    Article  CAS  Google Scholar 

  6. S.S. Kumar and V. Himabindu, Hydrogen production by PEM water electrolysis — A review, Mater. Sci. Energy Technol., 2(2019), No. 3, p. 442.

    Google Scholar 

  7. H. Nguyen, C. Klose, L. Metzler, S. Vierrath, and M. Breitwieser, Fully hydrocarbon membrane electrode assemblies for proton exchange membrane fuel cells and electrolyzers: An engineering perspective, Adv. Energy Mater., 12(2022), No. 12, art. No. 2103559.

  8. Q.C. Xu, L.Y. Zhang, J.H. Zhang, et al., Anion exchange membrane water electrolyzer: Electrode design, lab-scaled testing system and performance evaluation, EnergyChem, 4(2022), No. 5, art. No. 100087.

  9. M. Carmo, D.L. Fritz, J. Mergel, and D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38(2013), No. 12, p. 4901.

    Article  CAS  Google Scholar 

  10. R.R.R. Sulaiman, W.Y. Wong, and K.S. Loh, Recent developments on transition metal-based electrocatalysts for application in anion exchange membrane water electrolysis, Int. J. Energy Res., 46(2022), No. 3, p. 2241.

    Article  Google Scholar 

  11. L.H. Liu, N. Li, J.R. Han, K.L. Yao, and H.Y. Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 503.

    Article  CAS  Google Scholar 

  12. D.G. Li, A.R. Motz, C. Bae, et al., Durability of anion exchange membrane water electrolyzers, Energy Environ. Sci., 14(2021), No. 6, p. 3393.

    Article  CAS  Google Scholar 

  13. J.E. Park, S.Y. Kang, S.H. Oh, et al., High-performance anion-exchange membrane water electrolysis, Electrochim. Acta, 295(2019), p. 99.

    Article  CAS  Google Scholar 

  14. I. Vincent, E.C. Lee, and H.M. Kim, Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production, Sci. Rep., 11(2021), No. 1, art. No. 293.

  15. C.Q. Li and J.B. Baek, The promise of hydrogen production from alkaline anion exchange membrane electrolyzers, Nano Energy, 87(2021), art. No. 106162.

  16. S.Y. Kang, J.E. Park, G.Y. Jang, et al., High-performance and durable water electrolysis using a highly conductive and stable anion-exchange membrane, Int. J. Hydrogen Energy, 47(2022), No. 15, p. 9115.

    Article  CAS  Google Scholar 

  17. D.G. Li, E.J. Park, W.L. Zhu, et al., Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers, Nat. Energy, 5(2020), No. 5, p. 378.

    Article  CAS  Google Scholar 

  18. Y.M. Dong, K. He, L. Yin, and A.M. Zhang, A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties, Nanotechnology, 18(2007), No. 43, art. No. 435602.

  19. Z. Li, Y. Zhang, Y. Feng, et al., Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions, Adv. Funct. Mater., 29(2019), No. 36, art. No. 1903444.

  20. A.J. Esswein, M.J. McMurdo, P.N. Ross, A.T. Bell, and T.D. Tilley, Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis, J. Phys. Chem. C, 113(2009), No. 33, p. 15068.

    Article  CAS  Google Scholar 

  21. P. Lettenmeier, S. Kolb, N. Sata, et al., Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers, Energy Environ. Sci., 10(2017), No. 12, p. 2521.

    Article  CAS  Google Scholar 

  22. H. Liu, H.B. Tao, and B. Liu, Kinetic insights of proton exchange membrane water electrolyzer obtained by operando characterization methods, J. Phys. Chem. Lett., 13(2022), No. 28, p. 6520.

    Article  CAS  Google Scholar 

  23. B. Han, S.M. Steen, J.K. Mo, and F.Y. Zhang, Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy, Int. J. Hydrogen Energy, 40(2015), No. 22, p. 7006.

    Article  CAS  Google Scholar 

  24. R.A. Krivina, G.A. Lindquist, S.R. Beaudoin, et al., Anode catalysts in anion-exchange-membrane electrolysis without supporting electrolyte: Conductivity, dynamics, and ionomer degradation, Adv. Mater., 34(2022), No. 35, art. No. 2203033.

  25. S.M. Alia, M.A. Ha, C. Ngo, G.C. Anderson, S. Ghoshal, and S. Pylypenko, Platinum-nickel nanowires with improved hydrogen evolution performance in anion exchange membrane-based electrolysis, ACS Catal., 10(2020), No. 17, p. 9953.

    Article  CAS  Google Scholar 

  26. K. Karthick, S. Anantharaj, P.E. Karthik, B. Subramanian, and S. Kundu, Self-assembled molecular hybrids of CoS-DNA for enhanced water oxidation with low cobalt content, Inorg. Chem., 56(2017), No. 11, p. 6734.

    Article  CAS  Google Scholar 

  27. J.J. Liu, Z.Y. Kang, D.G. Li, et al., Elucidating the role of hydroxide electrolyte on anion-exchange-membrane water electrolyzer performance, J. Electrochem. Soc., 168(2021), No. 5, art. No. 054522.

  28. S. Siracusano, S. Trocino, N. Briguglio, V. Baglio, and A.S. Arico, Electrochemical impedance spectroscopy as a diagnostic tool in polymer electrolyte membrane electrolysis, Materials, 11(2018), No. 8, art. No. 1368.

  29. I. Dedigama, D.J.L. Brett, T.J. Mason, J. Millichamp, P.R. Shearing, and K.E. Ayers, An electrochemical impedance spectroscopy study and two phase flow analysis of the anode of polymer electrolyte membrane water electrolyser, ECS Trans., 68(2015), No. 3, p. 117.

    Article  CAS  Google Scholar 

  30. M. Bernt, A. Siebel, and H.A. Gasteiger, Analysis of voltage losses in PEM water electrolyzers with low platinum group metal loadings, J. Electrochem. Soc., 165(2018), No. 5, p. F305.

    Article  CAS  Google Scholar 

  31. T.Y. Ma, S. Dai, M. Jaroniec, and S.Z. Qiao, Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes, J. Am. Chem. Soc., 136(2014), No. 39, p. 13925.

    Article  CAS  Google Scholar 

  32. Z.Y. Li, K.H. Ye, Q.S. Zhong, C.J. Zhang, S.T. Shi, and C.W. Xu, Au-Co3O4/C as an efficient electrocatalyst for the oxygen evolution reaction, ChemPlusChem, 79(2014), No. 11, p. 1569.

    Article  CAS  Google Scholar 

  33. P.Q. Chen, Y.X. Tai, H. Wu, Y.F. Gao, J.Y. Chen, and J.G. Cheng, Novel confinement combustion method of nanosized WC/C for efficient electrocatalytic oxygen reduction, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1627.

    Article  CAS  Google Scholar 

  34. J.O. Majasan, J.I.S. Cho, M. Maier, I. Dedigama, P.R. Shearing, and D.J.L. Brett, Effect of anode flow channel depth on the performance of polymer electrolyte membrane water electrolyser, ECS Trans., 85(2018), No. 13, p. 1593.

    Article  CAS  Google Scholar 

  35. E. Cossar, A.O. Barnett, F. Seland, R. Safari, G.A. Botton, and E.A. Baranova, Ionomer content optimization in nickel-iron-based anodes with and without ceria for anion exchange membrane water electrolysis, J. Power Sources, 514(2021), art. No. 230563.

  36. E. Cossar, F. Murphy, J. Walia, A. Weck, and E.A. Baranova, Role of ionomers in anion exchange membrane water electrolysis: Is aemion the answer for nickel-based anodes? ACS Appl. Energy Mater., 5(2022), No. 8, p. 9938.

    Article  CAS  Google Scholar 

  37. S. Koch, P.A. Heizmann, S.K. Kilian, et al., The effect of ionomer content in catalyst layers in anion-exchange membrane water electrolyzers prepared with reinforced membranes (Aemion+™), J. Mater. Chem. A, 9(2021), No. 28, p. 15744.

    Article  CAS  Google Scholar 

  38. E. Leonard, A.D. Shum, N. Danilovic, et al., Interfacial analysis of a PEM electrolyzer using X-ray computed tomography, Sustainable Energy Fuels, 4(2020), No. 2, p. 921.

    Article  CAS  Google Scholar 

  39. A. Kiessling, J.C. Fornaciari, G. Anderson, et al., Influence of supporting electrolyte on hydroxide exchange membrane water electrolysis performance: Anolyte, J. Electrochem. Soc., 168(2021), No. 8, art. No. 084512.

  40. F. Razmjooei, R. Reißner, A.S. Gago, and A. Ansar, Highly active binder free plasma sprayed non-noble metal electrodes for anion exchange membrane electrolysis at different reduced KOH concentrations, ECS Trans., 92(2019), No. 8, p. 689.

    Article  CAS  Google Scholar 

  41. J.K. Lee, C. Lee, and A. Bazylak, Pore network modelling to enhance liquid water transport through porous transport layers for polymer electrolyte membrane electrolyzers, J. Power Sources, 437(2019), art. No. 226910.

  42. D.K. Zhang and K. Zeng, Evaluating the behavior of electrolytic gas bubbles and their effect on the cell voltage in alkaline water electrolysis, Ind. Eng. Chem. Res., 51(2012), No. 42, p. 13825.

    Article  CAS  Google Scholar 

  43. M.K. Cho, H.Y. Park, H.J. Lee, et al., Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content, J. Power Sources, 382(2018), p. 22.

    Article  CAS  Google Scholar 

  44. D.G. Li, I. Matanovic, A.S. Lee, et al., Phenyl oxidation impacts the durability of alkaline membrane water electrolyzer, ACS Appl. Mater. Interfaces, 11(2019), No. 10, p. 9696.

    Article  CAS  Google Scholar 

  45. A.D. Mohanty, S.E. Tignor, J.A. Krause, Y.K. Choe, and C. Bae, Systematic alkaline stability study of polymer backbones for anion exchange membrane applications, Macromolecules, 49(2016), No. 9, p. 3361.

    Article  CAS  Google Scholar 

  46. S. Maurya, A.S. Lee, D.G. Li, et al., On the origin of permanent performance loss of anion exchange membrane fuel cells: Electrochemical oxidation of phenyl group, J. Power Sources, 436(2019), art. No. 226866.

  47. X. Hu, Y.D. Huang, L. Liu, et al., Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers: Performance and durability, J. Membr. Sci., 621(2021), art. No. 118964.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52071231 and 51722103) and the Natural Science Foundation of Tian** (No. 19JCJQJC61900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaxin Guo, Pengfei Yin or Tao Ling.

Ethics declarations

Tao Ling is a youth editorial board member for this journal and was not involved in the editorial review or the decision to publish this article. The authors declare no competing financial interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, Y., Zhao, W. et al. Technical factors affecting the performance of anion exchange membrane water electrolyzer. Int J Miner Metall Mater 30, 2259–2269 (2023). https://doi.org/10.1007/s12613-023-2648-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2648-z

Keywords

Navigation