Log in

The Influence of Protein Secretomes of Enterococcus durans on ex vivo Human Gut Microbiome

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The gut microbiome plays a critical role to all animals and humans health. Methods based on ex vivo cultures are time and cost-effective solutions for rapid evaluation of probiotic effects on microbiomes. In this study, we assessed whether the protein secretome from the potential probiotic Enterococcus durans LAB18S grown on fructoligosaccharides (FOS) and galactoligosaccharides (GOS) had specific effects on ex vivo cultured intestinal microbiome obtained from a healthy individual. Metaproteomics was used to evaluate changes in microbial communities of the human intestinal microbiome. Hierarchical clustering analysis revealed 654 differentially abundant proteins from the metaproteome samples, showing that gut microbial protein expression varied on the presence of different E. durans secretomes. Increased amount of Bacteroidetes phylum was observed in treatments with secretomes from E. durans cultures on FOS, GOS and albumin, resulting in a decrease of the Firmicutes to Bacteroidetes (F/B) ratio. The most functionally abundant bacterial taxa were Roseburia, Bacteroides, Alistipes and Faecalibacterium. The results suggest that the secretome of E. durans may have favorable effects on the intestinal microbial composition, stimulating growth and different protein expression of beneficial bacteria. These findings suggest that proteins secreted by E. durans growing on FOS and GOS have different effects on the modulation of gut microbiota functional activities during cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

The proteomics mass spectrometry data are available via ProteomicXchange under the identifier PXD040751 (Username: reviewer_pxd040751@ebi.ac.uk; Password: glc8SRky).

References

  1. Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC (2018) Shifts on gut microbiota associated to Mediterranean diet adherence and specific dietary intakes on general adult population. Front Microbiol 9:890

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fan Y, Pedersen O (2021) Gut microbiota in human metabolic health and disease. Nature Rev Microbiol 19:55–71

    Article  CAS  Google Scholar 

  3. Cao Y, Oh J, Xue M, Huh WJ, Wang J, González-Hernández JA, Rice TA, Martin AL, Song D, Crawford JM, Herzon SB, Palm NW (2022) Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378:eabm3233

  4. Galloway-Peña J, Hanson B (2020) Tools for analysis of the microbiome. Digest Dis Sci 65:674–685

    Article  PubMed  Google Scholar 

  5. Mayne J, Ning Z, Zhang X, Starr AE, Chen R, Deeke S, Chiang CK, Xu B, Wen M, Cheng K, Seebun D, Star A, Moore JI, Figeys D (2016) Bottom-up proteomics (2013–2015): kee** up in the era of systems biology. Anal Chem 88:95–121

    Article  CAS  PubMed  Google Scholar 

  6. Stamboulian M, Canderan J, Ye Y (2022) Metaproteomics as a tool for studying the protein landscape of human-gut bacterial species. PLoS Comput Biol 18:e1009397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Rev Gastroenterol Hepatol 11:506–514

    Article  Google Scholar 

  8. Clarke TC, Black LI, Stussman BJ, Barnes PM, Nahin RL (2015) Trends in the use of complementary health approaches among adults: United States, 2002–2012. Natl Health State Rep 79:1–16

    Google Scholar 

  9. Draper K, Ley C, Parsonnet J (2017) Probiotic guidelines and physician practice: a cross-sectional survey and overview of the literature. Beneficial Microbes 8:507–519

    Article  CAS  PubMed  Google Scholar 

  10. Irwin C, Khalesi S, Cox AJ, Grant G, Davey AK, Bulmer AC, Desbrow B (2017) Effect of 8-weeks prebiotics/probiotics supplementation on alcohol metabolism and blood biomarkers of healthy adults: a pilot study. Eur J Nutr 57:1523–1534

    Article  PubMed  Google Scholar 

  11. Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O (2016) Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med 8:52

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pieniz S, Andreazza R, Anghinoni T, Camargo FAO, Brandelli A (2014) Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18S. Food Control 37:251–256

    Article  CAS  Google Scholar 

  13. Comerlato CB, Prichula J, Siqueira FM, Ritter AC, Varela APM, Mayer FQ, Brandelli A (2022) Genomic analysis of Enterococcus durans LAB18S, a potential probiotic strain isolated from cheese. Genet Mol Biol 45:e20210201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Comerlato CB, Zhang X, Walker K, Brandelli A, Figeys D (2020) Comparative proteomic analysis reveals metabolic variability of probiotic Enterococcus durans during aerobic and anaerobic cultivation. J Proteomics 220:103764

    Article  CAS  PubMed  Google Scholar 

  15. Li L, Ning Z, Zhang X, Mayne J, Cheng K, Stintzi A, Figeys D (2020) RapidAIM: a culture-and metaproteomics-based Rapid Assay of Individual Microbiome responses to drugs. Microbiome 8:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D (2005) Fermentation of fructooligosaccharides and inulin by Bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol 71:6150–6158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deeke SA, Starr AE, Ning Z, Ahamadi S, Zhang X, Mayne J, Chiang CK, Singleton R, Benchimol EI, Mack DR, Stintzi A, Figeys D (2018) Mucosal-luminal interface proteomics reveals biomarkers of pediatric inflammatory bowel disease-associated colitis. Am J Gastroenterol 113:713–724

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X, Ning Z, Mayne J, Moore JI, Li J, Butcher J, Deeke SA, Chen R, Chiang CK, Wen M, Mack D, Stintzi A, Figeys D (2016) MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota. Microbiome 4:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng K, Ning Z, Zhang X, Li L, Liao B, Mayne J, Stintzi A, Figeys D (2017) MetaLab: an automated pipeline for metaproteomic data analysis. Microbiome 5:157

    Article  PubMed  PubMed Central  Google Scholar 

  20. Singh RG, Tanca A, Palomba A, Van der Jeugt F, Verschaffelt P, Uzzau S, Martens L, Dawyndt P, Mesuere B (2019) Unipept 4.0: Functional analysis of metaproteome data. J Proteome Res 18:606–615

    Article  Google Scholar 

  21. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, **a J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46:486–494

    Article  Google Scholar 

  22. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lye HS, Kato T, Low WY (2017) Lactobacillus fermentum FTDC 8312 combats hypercholesterolemia via alteration of gut microbiota. J Biotechnol 262:75–83

    Article  CAS  PubMed  Google Scholar 

  24. Nakamoto N, Amiya T, Aoki R (2017) Commensal Lactobacillus controls immune tolerance during acute liver injury in mice. Cell Rep 21:1215–1226

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt TSB, Raes J, Bork P (2018) The human gut microbiome: from association to modulation. Cell 172:1198–1215

    Article  CAS  PubMed  Google Scholar 

  26. Stojanov S, Berlec A, Štrukelj B (2020) The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 8:1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R (2020) The Firmicutes/Bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12:1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pieniz S, Moura TM, Cassenego AP, Andreazza R, Frazzon APG, Camargo FAO, Brandelli A (2015) Evaluation of resistance genes and virulence factors in a food isolated Enterococcus durans with probiotic potential. Food Control 51:49–54

    Article  CAS  Google Scholar 

  29. Kitazawa H, Alvarez S, Suvorov A, Melnikov V, Villena J, Sánchez B (2015) Recent advances and future perspective in microbiota and probiotics. BioMed Res Int 2015:275631

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yu L, Zhao XK, Cheng ML (2017) Saccharomyces boulardii administration changes gut microbiota and attenuates D-galactosamine-induced liver injury. Sci Rep 7:1359

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chua MC, Ben-Amor K, Lay C (2017) Effect of synbiotic on the gut microbiota of cesarean delivered infants: a randomized, double-blind, multicenter study. J Pediatr Gastroenterol Nutr 65:102–106

    Article  PubMed  Google Scholar 

  32. Kosuwon P, Lao-Araya M, Uthaisangsook S (2018) A synbiotic mixture of scGOS/lcFOS and Bifidobacterium brevis M-16V increases faecal Bifidobacterium in healthy young children. Beneficial Microbes 9:541–552

    Article  CAS  PubMed  Google Scholar 

  33. De Filippis F, Esposito A, Ercolini D (2022) Outlook on next-generation probiotics from the gut. Cell Mol Life Sci 79:76

    Article  PubMed  Google Scholar 

  34. Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S (2021) Short chain fatty acids and its producing organisms: an overlooked therapy for IBD? EBioMedicine 66:103293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan J, Pan Y, Shao W, Wang C, Wang R, He Y, Zhang M, Wang Y, Li T, Wang Z, Liu W, Wang Z, Sun X, Dong S (2022) Beneficial effect of the short-chain fatty acid propionate on vascular calcification through intestinal microbiota remodeling. Microbiome 10:195

    Article  PubMed  PubMed Central  Google Scholar 

  36. He X, Zhao S, Li Y (2021) Faecalibacterium prausnitzii: a next-generation probiotic in gut disease improvement. Can J Infect Dis Med Microbiol 2021:6666114

    Article  Google Scholar 

  37. Maioli TU, Borras-Nogues E, Torres L, Barbosa SC, Martins VD, Langella P, Azevedo VA, Chatel JM (2021) Possible benefits of Faecalibacterium prausnitzii for obesity-associated gut disorders. Front Pharmacol 12:740636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kuda T, Brandelli A (2022) Effect of food ingredients on susceptible gut indigenous bacteria. In: Brandelli A (ed) Probiotics - advanced food and health applications. Academic Press, London 167–184

    Google Scholar 

  39. Sun M, Wu W, Liu Z, Cong Y (2017) Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol 52:1–8

    Article  CAS  PubMed  Google Scholar 

  40. LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P (2017) Beneficial effects on host energy metabolism of short chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Factories 16:79

    Article  Google Scholar 

  41. Yoshi K, Hosomi K, Kunisawa J (2019) Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front Nutr 6:48

    Article  Google Scholar 

  42. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M (2020) The controversial role of human gut Lachnospiraceae. Microorganisms 8:573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oliphant K, Ali M, D’Souza M, Hughes PD, Sulakhe D, Wang AZ, **e B, Yeasin R, Msall ME, Andrews B, Claud EC (2021) Bacteroidota and Lachnospiraceae integration into the gut microbiome at key time points in early life are linked to infant neurodevelopment. Gut Microbes 13:e1997560

    Article  Google Scholar 

  44. Benus RF, van der Werf TS, Welling GW, Judd PA, Taylor MA, Harmsen HJ, Whelan K (2010) Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects. Br J Nutr 104:693–700

    Article  CAS  PubMed  Google Scholar 

  45. Zafar H, Saier MH Jr (2021) Gut Bacteroides species in health and disease. Gut Microbes 13:1

    Article  PubMed  Google Scholar 

  46. Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A (2020) The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol 11:906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rau M, Rehman A, Dittrich M, Groen AK, Hermanns HM, Seyfried F, Beyersdorf N, Rosenstiel P, Geier A (2018) Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United Eur Gastroenterol J 6:1496–1507

    Article  CAS  Google Scholar 

  48. Medawar E, Haange SB, Rolle-Kampczyk U, Engelmann B, Dietrich A, Thieleking R, Wiegank C, Fries C, Horstmann A, Villringer A, von Bergen M, Fenske W, Witt AV (2021) Gut microbiota link dietary fiber intake and short-chain fatty acid metabolism with eating behavior. Transl Psychiatry 11:500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gomez-Arango LF, Barrett HL, Wilkinson SA, Callaway LK, McIntyre HD, Morrison M, Nitert MD (2018) Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 9:189–201

    Article  PubMed  PubMed Central  Google Scholar 

  50. Astbury S, Atallah E, Vijay A, Aithal GP, Grove JI, Valdes AM (2020) Lower gut microbiome diversity and higher abundance of proinflammatory genus Collinsella are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes 11:569–580

    Article  PubMed  Google Scholar 

  51. Hirayama M, Nishiwaki H, Hamaguchi T, Ito M, Ueyama J, Maeda T, Kashihara K, Tsuboi Y, Ohno K (2021) Intestinal Collinsella may mitigate infection and exacerbation of COVID-19 by producing ursodeoxycholate. PLoS ONE 16:e0260451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ballan R, Battistini C, Xavier-Santos D, Saad SMI (2020) Interaction of probiotics and prebiotics with the gut microbiota. Progr Mol Biol Translat Sci 171:265–300

    Article  CAS  Google Scholar 

  54. Watanabe Y, Nagai F, Morotomi M (2012) Characterization of Phascolarctobacterium succinatutens sp. nov., an asaccharolytic, succinate-utilizing bacterium isolated from human feces. Appl Environ Microbiol 78:511–518

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fernández-Veledo S, Vendrell J (2019) Gut microbiota-derived succinate: friend or foe in human metabolic diseases? Rev Endocr Metab Disord 20:439–447

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vidal-Veuthey B, González D, Cárdenas JP (2022) Role of microbial secreted proteins in gut microbiota-host interactions. Font Cell Infect Microbiol 12:964710

    Article  CAS  Google Scholar 

  57. Zhang T, Zhang W, Feng C, Kwok LY, He Q, Sun Z (2022) Stronger gut microbiome modulatory effects by postbiotics than probiotics in a mouse colitis model. Npj Sci Food 6:53

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work received financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico of Brazil (CNPq, grant 308880/2021–8) and the Emerging Leaders in the Americas Program (ELAP, Canada). This work was also supported by the Government of Canada through the Natural Sciences and Engineering Research Council of Canada (NSERC, grant no. 210034). CBC was a former recipient of a PhD fellowship from CAPES.

Author information

Authors and Affiliations

Authors

Contributions

CBC, XZ, JM, AB and DF contributed to the study conception and design. Material preparation, data collection, CBC and KW; data analysis and statistical analysis were performed by CBC, XZ, JM. The manuscript was written by CBC, and critically revised by AB. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Daniel Figeys or Adriano Brandelli.

Ethics declarations

Ethics Approval and Consent to Participate

The protocol for stool sample collection was approved by the Ottawa Health Science Network Research Ethics Board at the Ottawa Hospital (Ottawa, Canada).

Competing Interests

DF is a co-founder of MedBiome Inc., a personalized microbiome therapeutic company. The other Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 636 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comerlato, C.B., Zhang, X., Walker, K. et al. The Influence of Protein Secretomes of Enterococcus durans on ex vivo Human Gut Microbiome. Probiotics & Antimicro. Prot. (2023). https://doi.org/10.1007/s12602-023-10136-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-023-10136-9

Keywords

Navigation