Log in

Theoretical insights into efficient oxygen evolution reaction using non-noble metal single-atom catalysts on W2CO2 MXene

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The pursuit of highly active oxygen evolution reaction (OER) catalysts, especially those free of noble metals, is a focal point in fuel cell research. Utilizing extensive density functional theory calculations, this study designed and evaluated the activity and stability of single-atom catalysts (SACs) composed of 3d, 4d and 5d transition metals supported on tungsten-based MXene for OER applications. Results highlighted the exceptional OER performance of Ni@W2CO2, Rh@W2CO2 and Pt@W2CO2, displaying remarkably low overpotentials. The catalytic activity of TM@W2CO2 SACs exhibited a robust correlation with surface properties, particularly the d-band center index and surface work function. Moreover, Ni@W2CO2, Rh@W2CO2 and Pt@W2CO2 emerged as promising candidates for OER and oxygen reduction reaction (ORR) bifunctional catalysis, while Pt@W2CO2 and Rh@W2CO2 showed high potential for OER and hydrogen evolution reaction (HER) bifunctional catalysis. The effectiveness of tungsten-based MXene as a substrate for non-noble-metal SACs marks a breakthrough in OER catalyst design, driving advancements towards sustainable energy solutions and addressing critical challenges in energy conversion and storage.

Graphical Abstract

摘要

追求高活性析氧反应(OER)催化剂, 特别是不含贵金属的催化剂, 是燃料电池研究的热点. 本研究通过系统的密度泛函理论计算设计并评估了钨基MXene负载的3d, 4d和5d过渡金属组成的单原子催化剂(SACs) 在析氧应用方面的活性和稳定性. 结果表明Ni@W2CO2, Rh@W2CO2和Pt@W2CO2具有优异的OER活性, 显示出非常低的过电位. TM@W2CO2 SACs的催化活性与表面性质密切相关, 特别是d带中心指数和表面功函数. 此外, Ni@W2CO2, Rh@W2CO2和Pt@W2CO2是OER/ORR双功能催化剂的有希望的候选物, 而Pt@W2CO2和Rh@W2CO2在OER/HER双功能催化剂方面表现出很高的潜力. 钨基MXene作为非贵金属SACs载体的有效性标志着OER催化剂设计的突破, 推动了可持续能源解决方案的发展, 并解决了能源转换和存储方面的关键挑战.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ding JY, Yang H, Zhang SS, Liu Q, Cao HQ, Luo J, Liu XJ. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small. 2022;18(52):2204524. https://doi.org/10.1002/smll.202204524.

    Article  CAS  Google Scholar 

  2. Tao L, Wang YQ, Zou YQ, Zhang NN, Zhang YQ, Wu YJ, Wang YY, Chen R, Wang SY. Charge transfer modulated activity of carbon-based electrocatalysts. Adv Energy Mater. 2019;10(11):1901227. https://doi.org/10.1002/aenm.201901227.

    Article  CAS  Google Scholar 

  3. Shi LY, Bai WC, Deng Y, Sun JF, Zhang SF. Modification of Cu-based electrocatalysts and their research progress for electrochemical hydrogen evolution reaction. Copper Eng. 2023;6:51. https://doi.org/10.3969/j.issn.1009-3842.2023.06.006.

    Article  Google Scholar 

  4. Zhao S, Wu TH, He D, Zhang ZH, Wang BY, Wang LH, Yu HJ. Theoretical research into low-voltage Na2TiSiO5 anode for lithium-ion battery. Rare Met. 2022;41(10):3412. https://doi.org/10.1007/s12598-022-02051-9.

    Article  CAS  Google Scholar 

  5. Iqbal A, El-Kadri OM, Hamdan NM. Insights into rechargeable Zn-air batteries for future advancements in energy storing technology. J Energy Storage. 2023;62:106926. https://doi.org/10.1016/j.est.2023.106926.

    Article  Google Scholar 

  6. de Souza G, Costa JM, de Almeida Neto AF. Transition metal chalcogenides carbon-based as bifunctional cathode electrocatalysts for rechargeable zinc-air battery: an updated review. Adv Colloid Interface Sci. 2023;315:102891. https://doi.org/10.1016/j.cis.2023.102891.

    Article  CAS  Google Scholar 

  7. Mo SY, Du L, Huang ZY, Chen JD, Zhou YD, Wu PW, Meng L, Wang N, **ng LX, Zhao MQ, Yang YS, Tang JK, Zou YQ, Ye SY. Recent advances on PEM fuel cells: from key materials to membrane electrode assembly. Electrochem Energy Rev. 2023;6(1):28. https://doi.org/10.1007/s41918-023-00190-w.

    Article  CAS  Google Scholar 

  8. Gao FY, Gao MR. Nickel-based anode catalysts for efficient and affordable anion-exchange membrane fuel cells. Acc Chem Res. 2023;56(12):1445. https://doi.org/10.1021/acs.accounts.3c00071.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao YG, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen evolution/reduction reaction catalysts: from in situ monitoring and reaction mechanisms to rational design. Chem Rev. 2023;123(9):6257. https://doi.org/10.1021/acs.chemrev.2c00515.

    Article  CAS  PubMed  Google Scholar 

  10. Chen FY, Wu ZY, Adler Z, Wang HT. Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design. Joule. 2021;5(7):1704. https://doi.org/10.1016/j.joule.2021.05.005.

    Article  CAS  Google Scholar 

  11. Lin YC, Dong Y, Wang XZ, Chen L. Electrocatalysts for oxygen evolution reaction in acidic media. Adv Mater. 2022;35(22):2210565. https://doi.org/10.1002/adma.202210565.

    Article  CAS  Google Scholar 

  12. Qiao BT, Wang AQ, Yang XF, Allard LF, Jiang Z, Cui YT, Liu JY, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem. 2011;3(8):634. https://doi.org/10.1038/nchem.1095.

    Article  CAS  PubMed  Google Scholar 

  13. Yang XF, Wang AQ, Qiao BT, Li J, Liu JY, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res. 2013;46(8):1740. https://doi.org/10.1021/ar300361m.

    Article  CAS  PubMed  Google Scholar 

  14. Wang AQ, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem. 2018;2(6):65. https://doi.org/10.1038/s41570-018-0010-1.

    Article  CAS  Google Scholar 

  15. Liu JB, Gong HS, Ye GL, Fei HL. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022;41(5):1703. https://doi.org/10.1007/s12598-021-01904-z.

    Article  CAS  Google Scholar 

  16. Kumar P, Kannimuthu K, Zeraati AS, Roy S, Wang X, Wang XY, Samanta S, Miller KA, Molina M, Trivedi D, Abed J, Campos Mata MA, Al-Mahayni H, Baltrusaitis J, Shimizu G, Wu YA, Seifitokaldani A, Sargent EH, Ajayan PM, Hu JG, Kibria MG. High-density cobalt single-atom catalysts for enhanced oxygen evolution reaction. J Am Chem Soc. 2023;145(14):8052. https://doi.org/10.1021/jacs.3c00537.

    Article  CAS  PubMed  Google Scholar 

  17. Gong XG, Jiang ZZ, Zeng W, Hu C, Luo XF, Lei W, Yuan CL. Alternating magnetic field induced magnetic heating in ferromagnetic cobalt single-atom catalysts for efficient oxygen evolution reaction. Nano Lett. 2022;22(23):9411. https://doi.org/10.1021/acs.nanolett.2c03359.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Chen YW, Mu XL, Wu ZY, ** X, Li JM, Xu YZ, Yang L, ** XK, Jang H, Lei ZW, Liu QH, Jiao SH, Yan PF, Li XY, Cao RG. Spinel-anchored iridium single atoms enable efficient acidic water oxidation via intermediate stabilization effect. ACS Catal. 2023;13(6):3757. https://doi.org/10.1021/acscatal.2c05940.

    Article  CAS  Google Scholar 

  19. Li YH, Feng YJ, Zheng DS, Zhao XY, Zhou Y, Fu XY, Chen X. High-performance screening of carbon-nitride single-atom catalysts for oxygen electrode reaction in rechargeable metal–air batteries. Chem Eng J. 2023;476:146753. https://doi.org/10.1016/j.cej.2023.146753.

    Article  CAS  Google Scholar 

  20. Chen X, Luo L, Huang SH, Ge XB, Zhao XY. Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction and oxygen evolution reaction: a density functional theory study. Front Chem Sci Eng. 2023;17(5):570. https://doi.org/10.1007/s11705-022-2247-y.

    Article  CAS  Google Scholar 

  21. Cao H, Wang QL, Zhang ZS, Yan HM, Zhao HY, Yang HB, Liu B, Li J, Wang YG. Engineering single-atom electrocatalysts for enhancing kinetics of acidic volmer reaction. J Am Chem Soc. 2023;145(24):13038. https://doi.org/10.1021/jacs.2c13418.

    Article  CAS  PubMed  Google Scholar 

  22. Chen ZY, Li XP, Zhao J, Zhang SY, Wang JJ, Zhang H, Zhang JF, Dong QJ, Zhang WX, Hu WB, Han XP. Stabilizing Pt single atoms through Pt-Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution. Angewandte Chemie-Int Ed. 2023;62(39):202308686. https://doi.org/10.1002/anie.202308686.

    Article  CAS  Google Scholar 

  23. Sun TT, Zhao S, Chen WX, Zhai D, Dong JC, Wang Y, Zhang SL, Han AJ, Gu L, Yu R, Wen XD, Ren HL, Xu LB, Chen C, Peng Q, Wang DS, Li YD. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc Natl Acad Sci USA. 2018;115(50):12692. https://doi.org/10.1073/pnas.1813605115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen YJ, Ji SF, Zhao S, Chen WX, Dong JC, Cheong WC, Shen RG, Wen XD, Zheng LR, Rykov AI, Cai SC, Tang HL, Zhuang ZB, Chen C, Peng Q, Wang DS, Li YD. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat Commun. 2018;9:5422. https://doi.org/10.1038/s41467-018-07850-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao S, Chen F, Duan SB, Shao B, Li TB, Tang HL, Lin QQ, Zhang JY, Li L, Huang JH, Bion N, Liu W, Sun H, Wang AQ, Haruta M, Qiao BT, Li J, Liu JY, Zhang T. Remarkable active-site dependent H2O promoting effect in CO oxidation. Nat Commun. 2019;10:3824. https://doi.org/10.1038/s41467-019-11871-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qiao BT, Liu JX, Wang YG, Lin QQ, Liu XY, Wang AQ, Li J, Zhang T, Liu JY. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal. 2015;5(11):6249. https://doi.org/10.1021/acscatal.5b01114.

    Article  CAS  Google Scholar 

  27. Feng QC, Zhao S, He DS, Tian SB, Gu L, Wen XD, Chen C, Peng Q, Wang DS, Li YD. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J Am Chem Soc. 2018;140(8):2773. https://doi.org/10.1021/jacs.7b13612.

    Article  CAS  PubMed  Google Scholar 

  28. Hu MZ, Zhao S, Liu SJ, Chen C, Chen WX, Zhu W, Liang C, Cheong WC, Wang Y, Yu Y, Peng Q, Zhou KB, Li J, Li YD. MOF-confined sub-2 nm atomically ordered intermetallic PdZn nanoparticles as high-performance catalysts for selective hydrogenation of acetylene. Adv Mater. 2018;30(33):1801878. https://doi.org/10.1002/adma.201801878.

    Article  CAS  Google Scholar 

  29. Ji SF, Chen YJ, Zhao S, Chen WX, Shi LJ, Wang Y, Dong JC, Li Z, Li FW, Chen C, Peng Q, Li J, Wang DS, Li YD. Atomically dispersed ruthenium species inside metal-organic frameworks: combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angewandte Chemie-Int Ed. 2019;58(13):4271. https://doi.org/10.1002/anie.201814182.

    Article  CAS  Google Scholar 

  30. Feng QC, Zhao S, Xu Q, Chen WX, Tian SB, Wang Y, Yan WS, Luo J, Wang DS, Li YD. Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene. Adv Mater. 2019;31(36):1901024. https://doi.org/10.1002/adma.201901024.

    Article  CAS  Google Scholar 

  31. Zhao S, Tang Y, Yu XH, Li J. Superior reactivity of heterogeneous single-cluster catalysts for semi-hydrogenation of acetylene. Sci China Mater. 2023;66(10):3912. https://doi.org/10.1007/s40843-023-2558-7.

    Article  CAS  Google Scholar 

  32. Feng QC, Zhao S, Wang Y, Dong JC, Chen WX, He DS, Wang DS, Yang J, Zhu YM, Zhu HL, Gu L, Li Z, Liu YX, Yu R, Li J, Li YD. Isolated single-atom Pd sites in intermetallic nanostructures: high catalytic selectivity for semihydrogenation of alkynes. J Am Chem Soc. 2017;139(21):7294. https://doi.org/10.1021/jacs.7b01471.

    Article  CAS  PubMed  Google Scholar 

  33. Lim KRG, Handoko AD, Nemani SK, Wyatt B, Jiang HY, Tang JW, Anasori B, Seh ZW. Rational design of two-dimensional transition metal carbide/nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano. 2020;14(9):10834. https://doi.org/10.1021/acsnano.0c05482.

    Article  CAS  PubMed  Google Scholar 

  34. Hui XB, Ge XL, Zhao RZ, Li ZQ, Yin LW. Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance. Adv Func Mater. 2020;30(50):2005190. https://doi.org/10.1002/adfm.202005190.

    Article  CAS  Google Scholar 

  35. Shi LN, Cui LT, Ji YR, **e Y, Zhu YR, Yi TF. Towards high-performance electrocatalysts: activity optimization strategy of 2D MXenes-based nanomaterials for water-splitting. Coord Chem Rev. 2022;469:214668. https://doi.org/10.1016/j.ccr.2022.214668.

    Article  CAS  Google Scholar 

  36. Najam T, Shah SSA, Peng LS, Javed MS, Imran M, Zhao MQ, Tsiakaras P. Synthesis and nano-engineering of MXenes for energy conversion and storage applications: recent advances and perspectives. Coord Chem Rev. 2022;454:214339. https://doi.org/10.1016/j.ccr.2021.214339.

    Article  CAS  Google Scholar 

  37. Wan J, Wang YW, Zhang HJ, Wang Y. Local electrons perturbation of V2CTx via defect and strain for efficient hydrogen production. Chem Eng J. 2023;470:144151. https://doi.org/10.1016/j.cej.2023.144151.

    Article  CAS  Google Scholar 

  38. Tiwari JN, Umer M, Bhaskaran G, Umer S, Lee G, Kim MG, Lee HK, Kumar K, Vilian ATE, Huh YS, Han YK. Atomic layers of ruthenium oxide coupled with Mo2TiC2Tx MXene for exceptionally high catalytic activity toward water oxidation. Appl Catal B. 2023;339:123139. https://doi.org/10.1016/j.apcatb.2023.123139.

    Article  CAS  Google Scholar 

  39. Wu CY, Zhang Y, **ao WP. Design and synthesis of PtNi/MXene nanocomposites and its electrocatalytic performance for oxygen reduction reaction. Chin J Rare Met. 2023;47(12):1747. https://doi.org/10.13373/j.cnki.cjrm.XY22060042.

    Article  Google Scholar 

  40. He HM, Wen HM, Li HK, Li P, Wang JJ, Yang YJ, Li CP, Zhang ZH, Du M. Hydrophobicity tailoring of ferric covalent organic framework/MXene nanosheets for high-efficiency nitrogen electroreduction to ammonia. Adv Sci. 2023;10(15):2206933. https://doi.org/10.1002/advs.202206933.

    Article  CAS  Google Scholar 

  41. Wang Y, Nian Y, Biswas AN, Li W, Han Y, Chen JG. Challenges and opportunities in utilizing MXenes of carbides and nitrides as electrocatalysts. Adv Energy Mater. 2020;11(3):2002967. https://doi.org/10.1002/aenm.202002967.

    Article  CAS  Google Scholar 

  42. Peng XY, Zhao SZ, Mi YY, Han LL, Liu XJ, Qi DF, Sun JQ, Liu YF, Bao HH, Zhuo LC, **n HL, Luo J, Sun XM. Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media. Small. 2020;16(33):2002888. https://doi.org/10.1002/smll.202002888.

    Article  CAS  Google Scholar 

  43. Liu AM, Liang XY, Ren XF, Guan WX, Gao MF, Yang YA, Yang QY, Gao LG, Li YQ, Ma TL. Recent progress in MXene-based materials: potential high-performance electrocatalysts. Adv Funct Mater. 2020;30(38):2003437. https://doi.org/10.1002/adfm.202003437.

    Article  CAS  Google Scholar 

  44. Gloag L, Somerville SV, Gooding JJ, Tilley RD. Co-catalytic metal-support interactions in single-atom electrocatalysts. Nat Rev Mater. 2024;9(3):173. https://doi.org/10.1038/s41578-023-00633-2.

    Article  CAS  Google Scholar 

  45. Zhao X, Zheng XR, Lu Q, Li Y, **ao FP, Tang B, Wang SX, Yu DYW, Rogach AL. Electrocatalytic enhancement mechanism of cobalt single atoms anchored on different MXene substrates in oxygen and hydrogen evolution reactions. EcoMat. 2022;5(2):12293. https://doi.org/10.1002/eom2.12293.

    Article  CAS  Google Scholar 

  46. Fu ZZ, Ling CY, Wang JL. A Ti3C2O2 supported single atom, trifunctional catalyst for electrochemical reactions. J Mater Chem A. 2020;8(16):7801. https://doi.org/10.1039/d0ta01047b.

    Article  CAS  Google Scholar 

  47. Cui H, Liao HX, Wang ZL, **e JP, Tan PF, Chu DW, Jun P. Synergistic electronic interaction between ruthenium and nickel-iron hydroxide for enhanced oxygen evolution reaction. Rare Met. 2022;41(8):2606. https://doi.org/10.1007/s12598-022-02003-3.

    Article  CAS  Google Scholar 

  48. Hao YX, Hung SF, Zeng WJ, Wang Y, Zhang CC, Kuo CH, Wang LQ, Zhao S, Zhang Y, Chen HY, Peng SJ. Switching the oxygen evolution mechanism on atomically dispersed Ru for enhanced acidic reaction kinetics. J Am Chem Soc. 2023;145(43):23659. https://doi.org/10.1021/jacs.3c07777.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao XJ, Chang Y, He XL, Zhang HQ, Jia JC, Jia ML. Understanding ultra-dispersed CeOx modified iridium clusters as bifunction electrocatalyst for high-efficiency water splitting in acid electrolytes. J Rare Earths. 2023;41(2):208. https://doi.org/10.1016/j.jre.2022.01.013.

    Article  CAS  Google Scholar 

  50. Zhu YM, Wang JA, Koketsu T, Kroschel M, Chen JM, Hsu SY, Henkelman G, Hu ZW, Strasser P, Ma JW. Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions. Nat Commun. 2022;13(1):7754. https://doi.org/10.1038/s41467-022-35426-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zeng LY, Zhao ZL, Lv F, **a ZH, Lu SY, Li J, Sun KA, Wang K, Sun YJ, Huang QZ, Chen Y, Zhang QH, Gu L, Lu G, Guo SJ. Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer. Nat Commun. 2022;13(1):3822. https://doi.org/10.1038/s41467-022-31406-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gong FL, Ye S, Liu MM, Zhang JW, Gong LH, Zeng G, Meng EC, Su PP, **e KF, Zhang YH, Liu J. Boosting electrochemical oxygen evolution over yolk-shell structured O-MoS2 nanoreactors with sulfur vacancy and decorated Pt nanoparticles. Nano Energy. 2020;78:105284. https://doi.org/10.1016/j.nanoen.2020.105284.

    Article  CAS  Google Scholar 

  53. Du YX, Zhou YT, Zhu MZ. Co-based MOF derived metal catalysts: from nano-level to atom-level. Tungsten. 2023;5(2):201. https://doi.org/10.1007/s42864-022-00197-8.

    Article  Google Scholar 

  54. Gao JJ, Tao HB, Liu B. Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media. Adv Mater. 2021;33(31):2003786. https://doi.org/10.1002/adma.202003786.

    Article  CAS  Google Scholar 

  55. Wu ZP, Lu XF, Zang SQ, Lou XW. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv Funct Mater. 2020;30(15):1910274. https://doi.org/10.1002/adfm.201910274.

    Article  CAS  Google Scholar 

  56. Bennett LH, Cuthill JR, McAlister AJ, Erickson NE, Watson RE. Electronic structure and catalytic behavior of tungsten carbide. Science. 1974;184(4136):563. https://doi.org/10.1126/science.184.4136.563.

    Article  CAS  PubMed  Google Scholar 

  57. Levy RB, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis. Science (New York, NY). 1973;181(4099):547. https://doi.org/10.1126/science.181.4099.547.

    Article  CAS  PubMed  Google Scholar 

  58. Lu SL, Wu JJ, Hu HY, Pan XX, Hu ZB, Li HN, Zhu H, Duan F, Du ML. Boosting oxygen evolution through phase and electronic modulation of highly dispersed tungsten carbide with nickel do**. J Colloid Interface Sci. 2021;585:258. https://doi.org/10.1016/j.jcis.2020.11.098.

    Article  CAS  PubMed  Google Scholar 

  59. Li S, Chen BB, Wang Y, Ye MY, van Aken PA, Cheng C, Thomas A. Oxygen-evolving catalytic atoms on metal carbides. Nat Mater. 2021;20(9):1240. https://doi.org/10.1038/s41563-021-01006-2.

    Article  CAS  PubMed  Google Scholar 

  60. do Rêgo UA, Lopes T, Bott-Neto JL, Tanaka AA, Ticianelli EA. Oxygen reduction electrocatalysis on transition metal-nitrogen modified tungsten carbide nanomaterials. J Electroanal Chem. 2018;810:222. https://doi.org/10.1016/j.jelechem.2018.01.013.

    Article  CAS  Google Scholar 

  61. Nie M, Shen PK, Wei ZD. Nanocrystaline tungsten carbide supported Au–Pd electrocatalyst for oxygen reduction. J Power Sources. 2007;167(1):69. https://doi.org/10.1016/j.jpowsour.2006.12.059.

    Article  CAS  Google Scholar 

  62. Hunt ST, Nimmanwudipong T, Román-Leshkov Y. Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis. Angewandte Chemie-Int Ed. 2014;53(20):5131. https://doi.org/10.1002/anie.201400294.

    Article  CAS  Google Scholar 

  63. Ang EH, Dinh KN, Sun XL, Huang Y, Yang J, Dong ZL, Dong XC, Huang W, Wang ZG, Zhang H, Yan QY. Highly efficient and stable hydrogen production in all pH range by two-dimensional structured metal-doped tungsten semicarbides. Research. 2019. https://doi.org/10.34133/2019/4029516.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Esposito DV, Hunt ST, Stottlemyer AL, Dobson KD, McCandless BE, Birkmire RW, Chen JG. Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angewandte Chemie-Int Ed. 2010;49(51):9859. https://doi.org/10.1002/anie.201004718.

    Article  CAS  Google Scholar 

  65. Chang QF, Zhang XL, Yang ZX. Improved performance of electrochemical reduction of CO2 to HCOOH by Cu incorporation into the supported Au monolayer on tungsten carbide: a DFT study. Results Phys. 2023;51:106715. https://doi.org/10.1016/j.rinp.2023.106715.

    Article  Google Scholar 

  66. Juneau M, Yaffe D, Liu RJ, Agwara JN, Porosoff MD. Establishing tungsten carbides as active catalysts for CO2 hydrogenation. Nanoscale. 2022;14(44):16458. https://doi.org/10.1039/d2nr03281c.

    Article  CAS  PubMed  Google Scholar 

  67. Bretzler P, Huber M, Nickl S, Köhler K. Hydrogenation of furfural by noble metal-free nickel modified tungsten carbide catalysts. RSC Adv. 2020;10(46):27323. https://doi.org/10.1039/d0ra02003f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758. https://doi.org/10.1103/PhysRevB.59.1758.

    Article  CAS  Google Scholar 

  69. Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169. https://doi.org/10.1103/PhysRevB.54.11169.

    Article  CAS  Google Scholar 

  70. Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953. https://doi.org/10.1103/PhysRevB.50.17953.

    Article  Google Scholar 

  71. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188. https://doi.org/10.1103/PhysRevB.13.5188.

    Article  Google Scholar 

  72. Sanville E, Kenny SD, Smith R, Henkelman G. Improved grid-based algorithm for Bader charge allocation. J Comput Chem. 2007;28(5):899. https://doi.org/10.1002/jcc.20575.

    Article  CAS  PubMed  Google Scholar 

  73. Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci. 2006;36(3):354. https://doi.org/10.1016/j.commatsci.2005.04.010.

    Article  Google Scholar 

  74. Deringer VL, Tchougréeff AL, Dronskowski R. Crystal Orbital Hamilton Population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A. 2011;115(21):5461. https://doi.org/10.1021/jp202489s.

    Article  CAS  PubMed  Google Scholar 

  75. Dronskowski R, Blochl PE. Crystal Orbital Hamilton Populations (COHP). Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem. 1993;97(33):8617. https://doi.org/10.1021/j100135a014.

    Article  CAS  Google Scholar 

  76. Bai XW, Ling CY, Shi L, Ouyang YX, Li Q, Wang JL. Insight into the catalytic activity of MXenes for hydrogen evolution reaction. Sci Bull. 2018;63(21):1397. https://doi.org/10.1016/j.scib.2018.10.006.

    Article  CAS  Google Scholar 

  77. Ling CY, Shi L, Ouyang YX, Zeng XC, Wang JL. Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 2017;17(8):5133. https://doi.org/10.1021/acs.nanolett.7b02518.

    Article  CAS  PubMed  Google Scholar 

  78. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B. 2004;108(46):17886. https://doi.org/10.1021/jp047349j.

    Article  CAS  Google Scholar 

  79. Unterweger MP. Half-life measurements at the National Institute of Standards and Technology. Appl Radiat Isot. 2002;56(1–2):125. https://doi.org/10.1016/s0969-8043(01)00177-4.

    Article  CAS  PubMed  Google Scholar 

  80. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK. Electrolysis of water on oxide surfaces. J Electroanal Chem. 2007;607(1–2):83. https://doi.org/10.1016/j.jelechem.2006.11.008.

    Article  CAS  Google Scholar 

  81. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2013;26(7):992. https://doi.org/10.1002/adma.201304138.

    Article  CAS  PubMed  Google Scholar 

  82. **e Y, Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y, Yu XQ, Nam KW, Yang XQ, Kolesnikov AI, Kent PRC. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc. 2014;136(17):6385. https://doi.org/10.1021/ja501520b.

    Article  CAS  PubMed  Google Scholar 

  83. Guo YX, Yu XH, Yu Q, Li Y, Liu YB, Zhao CB, ** LX, Liu Z, Li J. Exploring stability of transition-metal single atoms on Cu2O surfaces. J Phys Chem C. 2022;126(18):8065. https://doi.org/10.1021/acs.jpcc.2c00751.

    Article  CAS  Google Scholar 

  84. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev. 2017;46(2):337. https://doi.org/10.1039/c6cs00328a.

    Article  CAS  PubMed  Google Scholar 

  85. Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem. 2011;3(7):1159. https://doi.org/10.1002/cctc.201000397.

    Article  CAS  Google Scholar 

  86. Zhuo YL, Liu D, Qiao LL, Chen SB, Lu JX, Ip WF, Pan H, Wang ZB. Ultrafast room-temperature synthesis of large-scale, low-cost, and highly active Ni-Fe based electrodes toward industrialized seawater oxidation. Adv Energy Mater. 2023;13(39):2301921. https://doi.org/10.1002/aenm.202301921.

    Article  CAS  Google Scholar 

  87. Liu YZ, Li XT, Zhang SF, Wang ZL, Wang Q, He YH, Huang WH, Sun QD, Zhong XY, Hu J, Guo XY, Lin Q, Li Z, Zhu Y, Chueh CC, Chen CL, Xu ZT, Zhu ZL. Molecular engineering of metal–organic frameworks as efficient electrochemical catalysts for water oxidation. Adv Mater. 2023;35(22):2300945. https://doi.org/10.1002/adma.202300945.

    Article  CAS  Google Scholar 

  88. Marquez RA, Kalokowski E, Espinosa M, Bender JT, Son YJ, Kawashima K, Chukwuneke CE, Smith LA, Celio H, Dolocan A, Zhan X, Miller N, Milliron DJ, Resasco J, Mullins CB. Transition metal incorporation: electrochemical, structure, and chemical composition effects on nickel oxyhydroxide oxygen-evolution electrocatalysts. Energy Environ Sci. 2024;17(5):2028. https://doi.org/10.1039/d3ee03617k.

    Article  CAS  Google Scholar 

  89. Hammer B, Nørskov JK. Electronic factors determining the reactivity of metal surfaces (Erratum to vol 343, pg 211, 1995). Surf Sci. 1996;359(1–3):306. https://doi.org/10.1016/0039-6028(96)00588-2.

    Article  CAS  Google Scholar 

  90. Hammer B, Nørskov JK. Why gold is the noblest of all the metals. Nature. 1995;376(6537):238. https://doi.org/10.1038/376238a0.

    Article  CAS  Google Scholar 

  91. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T. Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci. 2011;108(3):937. https://doi.org/10.1073/pnas.1006652108.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lang ND, Kohn W. Theory of metal surfaces: work function. Phys Rev B. 1971;3(4):1215. https://doi.org/10.1103/PhysRevB.3.1215.

    Article  Google Scholar 

  93. Wei B, Fu ZH, Legut D, Germann TC, Du SY, Zhang HJ, Francisco JS, Zhang RF. Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts. Adv Mater. 2021;33(40):2102595. https://doi.org/10.1002/adma.202102595.

    Article  CAS  Google Scholar 

  94. Huang ZF, Wang J, Peng YC, Jung CY, Fisher A, Wang X. Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv Energy Mater. 2017;7(23):1700544. https://doi.org/10.1002/aenm.201700544.

    Article  CAS  Google Scholar 

  95. Sun F, Tang Q, Jiang DE. Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction. ACS Catal. 2022;12(14):8404. https://doi.org/10.1021/acscatal.2c02081.

    Article  CAS  Google Scholar 

  96. Zheng Y, Jiao Y, Jaroniec M, Qiao SZ. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angewandte Chemie-Int Ed. 2014;54(1):52. https://doi.org/10.1002/anie.201407031.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22002004 and 92263206), the National Key R&D Program of China (No. 2022YFB2404400), “The Youth Bei**g Scholars program” (No. PXM2021_014204_000023) and the Science and Technology Projects of China Minmetals Corporation (No. 2021ZXA03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Zhao or Da-Zhou Yan.

Ethics declarations

Conflict of interests

Hai-Jun Yu is an editorial board member for Rare Metals and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6735 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, JY., Han, ZC., Zhao, S. et al. Theoretical insights into efficient oxygen evolution reaction using non-noble metal single-atom catalysts on W2CO2 MXene. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02838-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02838-y

Keywords

Navigation