Log in

Oxidation behavior of Ni-based superalloy GH738 in static air between 800 and 1000 °C

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of a nickel-based superalloy GH738 was studied by isothermal oxidation tests in still air at different temperatures, with exposure time up to 100 h. Oxidation-kinetic curves were plotted using the mass gain method. The surface and cross-sectional morphologies were observed by scanning electron microscopy (SEM). A composition analysis and an oxidation-product identification were conducted using energy-dispersive X-ray spectroscopy (EDS) and an X-ray diffraction (XRD), respectively. The results showed that GH738 exhibited parabolic oxidation-kinetic curves, with stable parabolic-rate constants at each temperatures. The activation energy of oxide growth was calculated to be 329.6 kJ·mol−1. Cr2O3 (chromia) was the external oxidation product at 800 °C. A TiO2–Cr2O3 double-layer structure was formed at 900 °C. The position of TiO2 changed from the oxide–metal interface to the air–oxide interface by the diffusion of Ti atoms in chromia during the oxidation time at this temperature. Spallation was observed in the Cr0.12Ti0.78O1.74–Cr2O3 multi-layer oxide of at 1000 °C, which increased the oxidation rate. For all the tests, the main internal oxide was always Al2O3. The entire GH738 oxidation process was interpreted by the competitive diffusion of elements (Cr, Ti, Ni, etc.) in metal matrix and chromia, while a schematic diagram of oxidation process was proposed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Whelchel RL, Kelekanjeri VSKG, Gerhardt RA, Ilavsky J. Effect of aging treatment on the microstructure and resistivity of a nickel-base superalloy. Metall Mater Trans A. 2011;42(5):1362.

    Article  CAS  Google Scholar 

  2. Kelekanjeri VSKG, Gerhardt RA. Characterization of microstructural fluctuations in Waspaloy exposed to 760 °C for times up to 2500 h. Electrochim Acta. 2006;51(8):1873.

    Article  CAS  Google Scholar 

  3. Hyde TH, **a L, Becker AA. Prediction of creep failure in aeroengine materials under multi-axial stress states. Int J Mech Sci. 1996;38(4):385.

    Article  Google Scholar 

  4. Sinha NK, Terada T, Au P. Minimum creep rate from primary creep using strain relaxation and recovery test. Scr Mater. 2003;49(12):1145.

    Article  CAS  Google Scholar 

  5. Liu X, Kang B, Chang K-M. The effect of hold-time on fatigue crack growth behaviors of WASPALOY alloy at elevated temperature. Mater Sci Eng A. 2003;340(1):8.

    Article  Google Scholar 

  6. Byrne J, Hall R, Grabowski L. Elevated temperature fatigue crack growth under dwell conditions in Waspaloy. Int J Fatigue. 1997;19(5):359.

    Article  CAS  Google Scholar 

  7. Goswami T. Low cycle fatigue—dwell effects and damage mechanisms. Int J Fatigue. 1999;21(1):55.

    Article  CAS  Google Scholar 

  8. Yao Z, Zhang M, Dong J. Stress rupture fracture model and microstructure evolution for Waspaloy. Metall Mater Trans A. 2013;44(7):3084.

    Article  CAS  Google Scholar 

  9. Semiatin SL, Weaver DS, Kramb RC, Fagin PN, Glavicic MG, Goetz RL, Frey ND, Antony MM. Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material. Metall Mater Trans A. 2004;35(2):679.

    Article  Google Scholar 

  10. Weaver DS, Semiatin SL. Recrystallization and grain-growth behavior of a nickel-base superalloy during multi-hit deformation. Scr Mater. 2007;57(11):1044.

    Article  CAS  Google Scholar 

  11. Stone HJ, Holden TM, Reed RC. On the generation of microstrains during the plastic deformation of Waspaloy. Acta Mater. 1999;47(17):4435.

    Article  CAS  Google Scholar 

  12. Shen G, Semiatin SL, Shivpuri R. Modeling microstructural development during the forging of Waspaloy. Metall Mater Trans A. 1995;26(7):1795.

    Article  Google Scholar 

  13. Chen JH, Rogers PM, Little JA. Oxidation behavior of several chromia-forming commercial nickel-base superalloys. Oxid Met. 1997;47(5–6):381.

    Article  CAS  Google Scholar 

  14. Pike LM, Srivastava SK. Oxidation behavior of wrought gamma-prime strengthened alloys. Mater Sci Forum. 2008;595–598:661.

    Article  Google Scholar 

  15. Kim D, Jang C, Ryu WS. Oxidation characteristics and oxide layer evolution of Alloy 617 and Haynes 230 at 900 °C and 1100 °C. Oxid Met. 2009;71(5):271.

    Article  CAS  Google Scholar 

  16. Jiang H, Dong J, Zhang M, Zheng L, Yao Z. Oxidation behavior and mechanism of Inconel 740H alloy for advanced ultra-supercritical power plants between 1050 and 1170 °C. Oxid Met. 2015;84(1):61.

    Article  CAS  Google Scholar 

  17. Pérez-González FA, Garza-Montes-de Oca NF, Colás R. High temperature oxidation of the Haynes 282© nickel-based superalloy. Oxid Met. 2014;82(3):145.

    Article  Google Scholar 

  18. Hussain N, Shahid KA, Khan IH, Rahman S. Oxidation of high-temperature alloys (superalloys) at elevated temperatures in air: I. Oxid Met. 1994;41(3):251.

    Article  CAS  Google Scholar 

  19. Cao JD, Zhang JS, Hua YQ, Rong Z, Chen RF, Ye YX. High temperature oxidation behavior of Ni-based superalloy GH586 in air. Rare Met. 2017;36(11):878.

    Article  CAS  Google Scholar 

  20. Litz J, Rahmel A, Schorr M, Weiss J. Scale formation on the Ni-base superalloys IN 939 and IN 738 LC. Oxid Met. 1989;32(3):167.

    Article  CAS  Google Scholar 

  21. Hussain N, Qureshi AH, Shahid KA, Chughtai NA, Khalid FA. High-temperature oxidation behavior of HASTELLOY C-4 in steam. Oxid Met. 2004;61(5):355.

    Article  CAS  Google Scholar 

  22. Seal S, Kuiry SC, Bracho LA. Surface chemistry of oxide scale on IN-738LC superalloy: effect of long-term exposure in Air at 1173 K. Oxid Met. 2002;57(3):297.

    Article  CAS  Google Scholar 

  23. Al-Hatab KA, Al-Bukhaiti MA, Krupp U, Kantehm M. Cyclic oxidation behavior of IN718 superalloy in air at high temperatures. Oxid Met. 2011;75(3–4):209.

    Article  CAS  Google Scholar 

  24. Wang MQ, Qu JL, Yin TZ, Sheng JY, Deng Q, Lv XD. Study on oxidation behavior of Alloy GH4720Li at high temperatures. J Iron Steel Res. 2010;22(9):28.

    Google Scholar 

  25. Pan Y, Wang S. Insight into the oxidation mechanism of MoSi2: ab-initio calculations. Ceram Int. 2018;44:19538.

    Google Scholar 

  26. Li SL, Qi HY, Yang XG. Oxidation-induced damage of an uncoated and coated nickel-based superalloy under simulated gas environment. Rare Met. 2018;36(3):204.

    Article  Google Scholar 

  27. Guo WJ, Zhang JX, Li JS, Lu YL, Zhou XT. Oxidation properties of Ni–16Mo–7Cr–4Fe superalloy with different Si contents at 700 °C. Chin J Rare Metals. 2019;43(5):507.

    Google Scholar 

  28. Li JS, Guo WJ, Zhang JX, Lu YL, Zhou XT. Oxidation behavior of Hastelloy N superalloy at 700 °C in air with different Mn contents. Chin J Rare Metals. 2019;43(2):157.

    Google Scholar 

  29. Zhou XF, Chen G, Feng YY, Qi ZX, Wang MZ, Li P, Cheng JL. Isothermal oxidation behavior of a new Re-free nickel-base single crystal superalloy at 950 °C. Rare Met. 2017;36(8):617.

    Article  CAS  Google Scholar 

  30. Al-hatab KA, Al-bukhaiti MA, Krupp U, Kantehm M. Cyclic oxidation behavior of IN718 superalloy in air at high temperatures. Oxid Met. 2011;75(3):209.

    Article  CAS  Google Scholar 

  31. Hussain N, Shahid KA, Khan IH, Rahman S. Oxidation of high-temperature alloys (superalloys) at elevated temperatures in air. II. Oxid Met. 1995;43(3):363.

    Article  CAS  Google Scholar 

  32. Rabbani F, Ward LP, Strafford KN. A comparison of the growth kinetics and scale morphology for three superalloys at 930 °C in air and low PO2 environments. Oxid Met. 2000;54(1–2):139.

    Article  CAS  Google Scholar 

  33. Liu FJ, Zhang MC, Dong JX, Zhang YW. High-temperature oxidation of FGH96 P/M superalloy. Acta Metall Sin. 2007;20(2):102.

    Article  CAS  Google Scholar 

  34. Lobnig RE, Schmidt HP, Hennesen K, Grabke HJ. Diffusion of cations in chromia layers grown on iron-base alloys. Oxid Met. 1992;37(1–2):81.

    Article  CAS  Google Scholar 

  35. Sigler DR. The oxidation behavior of Fe–20Cr alloy foils in a synthetic exhaust-gas atmosphere. Oxid Met. 1996;46(5–6):335.

    Article  CAS  Google Scholar 

  36. N’Dah E, Hierro MP, Borrero K, Pérez FJ. Study of the cyclic oxidation resistance of superalloy IN-625: lifetime predicted by COSP-modelling program. Oxid Met. 2007;68(1–2):9.

    Article  Google Scholar 

  37. Zhang S, Wang Q, Zhao XS, Zhang CH. High temperature oxidation behavior of cast Ni-based superalloy K444. J Shenyang Univ Technol. 2010;2:136.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Scientific Research Fund of Nan**g Institute of Technology (No. CKJA201802) and the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (No. ASMA201802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xue, H. & Wang, Y. Oxidation behavior of Ni-based superalloy GH738 in static air between 800 and 1000 °C. Rare Met. 40, 616–625 (2021). https://doi.org/10.1007/s12598-020-01513-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01513-2

Keywords

Navigation