Log in

Enhanced alumina film adhesion of Hf/Y-doped iron–aluminum alloys during high-temperature oxidation: a new observation

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The cyclic oxidation behavior of Hf/Y-doped B2 FeAl intermetallics at 1373 K was investigated. For an undoped FeAl alloy, premature spallation of the alumina film occurs due to the formation of numerous voids at the film/alloy interface and apparent shrinkage in the film. In contrast to this, do** with either Hf or Y significantly improves the interfacial adhesion between the alumina film and the alloy substrate, particularly with Hf-do**. Microstructural observation in combination with Auger electron spectroscopic analysis suggests that in addition to prohibiting interfacial void formation and alleviating film shrinkage, the addition of Hf in the FeAl alloy could consolidate the film/alloy interface by directly participating in chemical bonding across the interface as a Hf ion. This causes the spallation of alumina film from the equiaxed grains/columnar grains interface rather than the bottom of the film.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Viguier B, Martinez M, Lacaze J. Characterization of complex planar faults in FeAl(B) alloys. Intermetallics. 2017;83:64.

    Article  Google Scholar 

  2. Ruan Y, Yan N, Zhu HZ, Zhou K, Wei B. Thermal performance determination of binary Fe-Al alloys at elevated temperatures. J Alloys Compd. 2017;701:676.

    Article  Google Scholar 

  3. Zhang ZX, Li XY, Dong HS. Plasma-nitriding and characterization of FeAl40 iron aluminide. Acta Mater. 2015;86:341.

    Article  Google Scholar 

  4. Airiskallio E, Nurmi E, Heinonen MH, Väyrynen IJ, Kokko K, Ropo M, Punkkinen MPJ, Pitkänen H, Alatalo M, Kollár J, Johansson B, Vitos L. High temperature oxidation of Fe–Al and Fe–Cr–Al alloys: the role of Cr as a chemically active element. Corros Sci. 2010;52:3394.

    Article  Google Scholar 

  5. Li DQ, Zhou LX, Zhu KJ, Gu J, Zheng SH. Isothermal oxidation behavior of scandium and yttrium co-doped B2-type iron–aluminum intermetallics at elevated temperature. Rare Met. 2018;37(8):690.

    Article  Google Scholar 

  6. Brito P, Pinto H, Kostka A. The crystallographic template effect assisting the formation of stable α-Al2O3 during low temperature oxidation of Fe–Al alloys. Corros Sci. 2016;105:100.

    Article  Google Scholar 

  7. Nowak K, Kupka M, Maszybrocka J, Barylski A. Effect of thermal oxidation process on wear resistance of B2 iron aluminide. Vacuum. 2015;114:221.

    Article  Google Scholar 

  8. Lang FQ, Yu ZM, Gedevanishvili S, Deevi SC, Narita T. Cyclic oxidation behavior of Fe-40Al sheet. Intermetallics. 2004;12:451.

    Article  Google Scholar 

  9. Zhang Y, Pint BA, Garner GW, Cooley KM, Haynes JA. Effect of cycle length on the oxidation performance of iron aluminide coatings. Surf Coat Technol. 2004;188–189:35.

    Article  Google Scholar 

  10. DeVan JH, Tortorelli PF. The oxidation–sulfidation behavior of iron alloys containing 16–40 at% aluminum. Corros Sci. 1993;35:1065.

    Article  Google Scholar 

  11. Hou PY, Moskito J. Sulfur segregation to Al2O3–FeAl interfaces studied by field emission-Auger electron spectroscopy. Oxid Met. 2003;59(5):559.

    Article  Google Scholar 

  12. Xu CH, Gao W, He YD. High temperature oxidation behaviour of FeAl intermetallics–oxide scales formed in ambient atmosphere. Scr Mater. 2000;42(10):975.

    Article  Google Scholar 

  13. He YS, Hu R, Luo WZ, He T, Liu XH. Oxidation behavior of a novel multi-element alloyed Ti2AlNb-based alloy in temperature range of 650–850 °C. Rare Met. 2018;37(10):838.

    Article  Google Scholar 

  14. Han T, Xu XJ, Ge XL, Zhong YY, Liu QH, Chen TZ. High temperature oxidation behavior of Ti–8Si–1.4Zr–xY2O3 alloy. Chin J Rare Met. 2018;42(2):130.

    Google Scholar 

  15. Xu CH, Gao W, Li S. Oxidation behaviour of FeAl intermetallics–the effect of Y on the scale spallation resistance. Corros Sci. 2001;43:671.

    Article  Google Scholar 

  16. Li DQ, Lin DL, Xu Y. Oxidation behavior of FeAl alloys with and without titanium. J Mater Sci. 2001;36(4):979.

    Article  Google Scholar 

  17. Montealegre MA, Gonzalez-Carrasco JL. Influence of the yttria content on the oxidation behaviour of the intermetallic Fe40Al alloy. Intermetallics. 2003;11:169.

    Article  Google Scholar 

  18. Liu ZY, Gao W, Wang FH. Oxidation resistance of magnetron sputter deposited beta-FeAl + Zr coatings. High Temp Mater Process. 2000;19(6):419.

    Article  Google Scholar 

  19. Pint BA. Progress in understanding the reactive element effect since the Whittle and Stringer literature review. In: Proceedings of John Stringer Symposium on High Temperature Corrosion. Novelty, Ohio, USA: ASM International; 2003, 9.

  20. Whittle DP, Stringer J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions. Philos Trans R Soc Lond Ser A. 1980;295:309.

    Article  Google Scholar 

  21. Gesmundo F, Hou PY. Analysis of pore formation at oxide-alloy Interfaces–II: theoretical treatment of vacancy condensation for immobile interfaces. Oxid Metals. 2003;59(1):63.

    Article  Google Scholar 

  22. Christensen RJ, Tolpygo VK, Clarke DR. The influence of the reactive element yttrium on the stress in alumina scales formed by oxidation. Acta Mater. 1997;45(4):1761.

    Article  Google Scholar 

  23. Xu CH, Gao W. Oxidation behaviour of FeAl intermetallics: effects of reactive elements on cyclic oxidation properties. Mater Sci Technol. 2001;17(3):324.

    Article  Google Scholar 

  24. Xu CH, Gao W, Gong H. Oxidation behaviour of FeAl intermetallics. The effects of Y and/or Zr on isothermal oxidation kinetics. Intermetallics. 2000;8:769.

    Article  Google Scholar 

  25. Liu T, Wang CX, Shen HL, Chou WS, Iwata NY, Kimura A. The effects of Cr and Al concentrations on the oxidation behavior of oxide dispersion strengthened ferritic alloys. Corros Sci. 2013;76:310.

    Article  Google Scholar 

  26. Pint BA, More KL, Wright IG. The use of two reactive elements to optimize oxidation performance of alumina-forming alloys. Mater High Temp. 2003;20(3):375.

    Article  Google Scholar 

  27. Sato A, Chiu YL, Reed RC. Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications. Acta Mater. 2011;59:225.

    Article  Google Scholar 

  28. Prajitno D, Gleeson B, Young DJ. The cyclic oxidation behaviour of α-Cr + β-NiAl alloys with and without trace Zr addition. Corros Sci. 1997;39(4):639.

    Article  Google Scholar 

  29. Tan X, Peng X, Wang F. The effect of grain refinement on the adhesion of an alumina scale on an aluminide coating. Corros Sci. 2014;85:280.

    Article  Google Scholar 

  30. Douglass DL, Kuenzly JD. Oxidation mechanism of Ni3Al containing yttrium. Oxid Metals. 1974;8(3):139.

    Article  Google Scholar 

  31. Pint BA, Martin JR, Hobbs LW. 18O/SIMS characterization of the growth mechanism of doped and undoped α-Al2O3. Oxid Metals. 1993;39(3/4):167.

    Article  Google Scholar 

  32. Pint BA, Alexander KB. Grain boundary segregation of cation dopants in α-Al2O3 scales. J Electrochem Soc. 1998;145(6):1819.

    Article  Google Scholar 

  33. Pint BA. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid Metals. 1996;45(1/2):1.

    Article  Google Scholar 

  34. Li DQ, Guo HB, Wang D, Zhang T, Gong SK, Xu HB. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200 °C. Corros Sci. 2013;66:125.

    Article  Google Scholar 

  35. Hou PY, Niu Y, Van Lienden C. Analysis of pore formation at oxide-alloy interfaces–I: experimental results on FeAl. Oxid Metals. 2003;59(1):41.

    Article  Google Scholar 

  36. Guo HB, Li DQ, Peng H, Cui YJ, Gong SK. High-temperature oxidation and hot-corrosion behaviour of EB-PVD β-NiAlDy coatings. Corros Sci. 2011;53:1050.

    Article  Google Scholar 

  37. Zheng YB, Wang F, Ai TT, Li C. Structural, elastic and electronic properties of B2-type modified by ternary additions FeAl-based intermetallics: first-principles study. J Alloys Compd. 2017;710:581.

    Article  Google Scholar 

  38. Pint BA, Schneibel JH. The effect of carbon and reactive element dopants on oxidation lifetime of FeAl. Scr Mater. 2005;52:1199.

    Article  Google Scholar 

  39. Pint BA, More KL, Tortorelli PF. Optimizing the imperfect oxidation performance of iron aluminides. Mater Sci Forum. 2001;369–372(1):411.

    Article  Google Scholar 

  40. Carling KM, Carter EA. Effects of segregating elements on the adhesive strength and structure of the α-Al2O3/β-NiAl interface. Acta Mater. 2007;55:2791.

    Article  Google Scholar 

  41. Guo HB, Zhang T, Wang SX, Gong SK. Effect of Dy on oxide scale adhesion of NiAl coatings at 1200 °C. Corros Sci. 2011;53:2228.

    Article  Google Scholar 

  42. Heuer AH, Hovis DB, Smialek JL, Gleeson B. Alumina scale formation: a new perspective. J Am Ceram Soc. 2011;94(S1):146.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Basic Research Program of State Grid (No. GCB17201600179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Qing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DQ., Zhou, LX., Zhang, J. et al. Enhanced alumina film adhesion of Hf/Y-doped iron–aluminum alloys during high-temperature oxidation: a new observation. Rare Met. 38, 877–884 (2019). https://doi.org/10.1007/s12598-019-01308-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01308-0

Keywords

Navigation