Log in

Synthesis and densification of zirconium diboride prepared by carbothermal reduction

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Using boron powder as additive, the preparation of zirconium diboride (ZrB2) by carbothermal reduction was investigated. The results show that the carbothermal reduction cannot be completely done until the temperature is more than 1900 °C. The ZrB2 particles prepared without boron (B) additive at 1900 °C for 3 h are rodlike and show a preferential grain growth along [001] direction. B additive changes the heat effect of the raw materials. With B additive, the morphology of ZrB2 particles turns to be regular shape. The average particle size is about 3.6 μm with 2.5 wt% B additives. With more B additive, the shape of particles turns to be round like and the average particle size is decreased to 2.3 μm when 5 wt% B is added. The existence of oxides in grain boundary is a key factor to keep ZrB2 ceramic from deep densification. Using ZrB2 powder prepared with 5 wt% B additives, by controlling carbon content in ZrB2 powder, ZrB2 ceramic with 93% relative density is hot-pressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA. Refractory diborides of zirconium and hafnium. J Am Ceram Soc. 2007;90(5):1347.

    Article  CAS  Google Scholar 

  2. Gasch MJ, Ellerby DT, Johnson SM. Ultra high temperature ceramic composites. In: Bansal NP, editor. Handbook of Ceramic Composites. New York: Springer; 2005; 197.

    Chapter  Google Scholar 

  3. Mroz C. Zirconium diboride. Am Ceram Soc Bull. 1995;74(6):164.

    CAS  Google Scholar 

  4. Qiu H, Guo W, Zou J, Zhang GJ. ZrB2 powders prepared by boro/carbothermal reduction of ZrO2: the effects of carbon source and reaction atmosphere. Powder Technol. 2012;217(2):462.

    Article  CAS  Google Scholar 

  5. Jung EY, Kim JH, Jung SH, Choi SC. Synthesis of ZrB2 powders by carbothermal and borothermal reduction. J Alloys Compd. 2012;538(42):164.

    Article  CAS  Google Scholar 

  6. Guo W, Zhang G. New borothermal reduction route to synthesize submicrometric ZrB2 powders with low oxygen content. J Am Ceram Soc. 2011;94(11):3702.

    Article  CAS  Google Scholar 

  7. Guo WM, Tan DW, Zhang ZL, **e H, Wu LX, Lin HT. Synthesis of fine ZrB2 powders by new borothermal reduction of coarse ZrO2 powders. Ceram Int. 2016;42(13):15087.

    Article  CAS  Google Scholar 

  8. Çamurlu HE, Maglia F. Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis. J Eur Ceram Soc. 2009;29(8):1501.

    Article  Google Scholar 

  9. La PQ, Han SB, Lu XF, Wei YP. Effects of the diluent content on microstructure of submicron ZrB2 by combustion synthesis. J Inorg Mater. 2014;29(2):191.

    Article  CAS  Google Scholar 

  10. Ji G, Ji H, Li M, Li X, Sun X. Synthesis of zirconium diboride nano-powders by novel complex sol–gel technology at low temperature. J Sol–Gel Sci Technol. 2014;69(1):114.

    Article  CAS  Google Scholar 

  11. Cao YN, Du S, Wang JK, Zhang HJ, Li FL, Lu LL, Zhang SW, Deng XG. Preparation of zirconium diboride ultrafine hollow spheres by a combined sol–gel and boro/carbothermal reduction technique. J Sol–Gel Sci Technol. 2014;72(1):130.

    Article  CAS  Google Scholar 

  12. Ji H, Yang M, Li M, Ji G, Fan H, Sun X. Low-temperature synthesis of ZrB2 nano-powders using a sorbitol modified sol-gel processing route. Adv Powder Technol. 2014;25(3):910.

    Article  CAS  Google Scholar 

  13. Graves JP, Chapman IT, Coda S, Johnson T, Lennholm M. Low temperature synthesis of ZrB2 powder synergistically by borothermal and carbothermal reduction. Rare Met. 2011;30(1):548.

    Google Scholar 

  14. Baik S, Becher PF. Effect of oxygen on the densification of TiB2. J Am Ceram Soc. 2005;70(8):527.

    Article  Google Scholar 

  15. Zhu S, Fahrenholtz WG, Hilmas GE, Zhang SC. Pressureless sintering of carbon-coated zirconium diboride powders. Mater Sci Eng, A. 2007;459(1):167.

    Article  Google Scholar 

  16. He R, Zhang R, Pei Y, Fang D. Two-step hot pressing of bimodal micron/nano-ZrB2 ceramic with improved mechanical properties and thermal shock resistance. Int J Refract Metals Hard Mater. 2014;46(1):65.

    Article  CAS  Google Scholar 

  17. Brochu M, Gauntt BD, Boyer L, Loehman RE. Pressureless reactive sintering of ZrB2 ceramic. J Eur Ceram Soc. 2009;29(8):1493.

    Article  CAS  Google Scholar 

  18. Asl MS, Kakroudi MG, Nayebi B, Nasiri H. Taguchi analysis on the effect of hot pressing parameters on density and hardness of zirconium diboride. Int J Refract Metals Hard Mater. 2015;50:313.

    Article  Google Scholar 

  19. Wang H, Chen D, Wang CA, Zhang R, Fang D. Preparation and characterization of high-toughness ZrB2/Mo composites by hot-pressing process. Int J Refract Metals Hard Mater. 2009;27(6):1024.

    Article  CAS  Google Scholar 

  20. Choi SK, Ui SW, Choi IS, Choi SC. Densification behavior of ZrB2 with Co–WC as additives. J Ceram Soc Jpn. 2014;122(3):198.

    Article  Google Scholar 

  21. Chamberlain AL, Fahrenholtz WG, Hilmas GE. Pressureless sintering of zirconium diboride. J Am Ceram Soc. 2006;89(2):450.

    Article  CAS  Google Scholar 

  22. Wang Z, Zhang H, Gong S, Yao J, Ma SZ. Study on the IFBA pellets coating process. Nucl Sci Eng. 2015;35(4):633.

    CAS  Google Scholar 

  23. Li R, Song S, Wang Y, Zhen Q. Preparation and thermodynamics mechanism of nanocrystalline ZrC powders. Chin J Rare Metals. 2015;39(7):605.

    CAS  Google Scholar 

  24. Maeda H, Yoshikawa T, Kusakabe K, Morooka S. Synthesis of ultrafine NbB2, powder by rapid carbothermal reduction in a vertical tubular reactor. Cheminform. 1994;215(1–2):127.

    CAS  Google Scholar 

  25. Khanra AK, Pathak LC, Godkhindi MM. Carbothermal synthesis of zirconium diboride (ZrB2) whiskers. Br Ceram Trans. 2007;106(3):155.

    CAS  Google Scholar 

  26. Guo W, Zhang G. Reaction processes and characterization of ZrB2 powder prepared by boro/carbothermal reduction of ZrO2 in vacuum. J Am Ceram Soc. 2009;92(1):264.

    Article  CAS  Google Scholar 

  27. Yang BY, Li JP, Zhao B, Hu YZ, Wang TY, Sun DF, Li RX, Yin S, Feng ZH, Tang Q, Sato T. Synthesis of hexagonal-prism-like ZrB2 by a sol–gel route. Powder Technol. 2014;256(1):522.

    Article  CAS  Google Scholar 

  28. Hartman P, Perdok WG. On the relations between structure and morphology of crystals. I. Acta Crystallogr. 1955;8(9):521.

    Article  CAS  Google Scholar 

  29. Fan Z, Guo Z, Cantor B. The kinetics and mechanisms of interfacial reaction in sigma fibre-reinforced Ti MMCs. Compos A Appl Sci Manuf. 1997;28(2):131.

    Article  Google Scholar 

  30. Liu GY. Monte carlo simulation for zirconium diboride ceramics during sintering initial stage. Harbin: Harbin Institute of Technology; 2008; 28.

    Google Scholar 

  31. Zhao B, Yang BY, Wang TY, Sun DF, Hu YZ, Li RX, Yin S, Li JP, Feng ZH, Duan HP, Tang Q, Sato T. Nanocarbon-dependent synthesis of one-dimensional bead-chain-like β-SiC. Powder Technol. 2013;246:487.

    Article  CAS  Google Scholar 

  32. Zhang GJ, Zou J, Ni DW, Liu HT, Kan YM. Boride ceramics: densification, microstructure, tailoring and properties improvement. J Inorg Mater. 2012;27(3):225.

    Article  Google Scholar 

  33. Sciti D, Silvestroni L, Guicciardi S, Monteverde F. Reactive processes for Diboride-based ultra-high temperature ceramics. In: Fahrenholtz WG, Wuchina EJ, Lee WE, Zhou Y, editors. Ultra-High Temperature Ceramics: Materials for Extreme Environments. London: Wiley; 2014; 92.

    Google Scholar 

  34. Sha JJ, Li J, Lv ZZ, Wang SH, Zhang ZF, Zu YF, Flauder S, Krenkel W. ZrB2-based composites toughened by as-received and heat-treated short carbon fibers. J Eur Ceram Soc. 2017;37(2):549.

    Article  CAS  Google Scholar 

  35. Nisar A, Balani K, Sreenivas N, Ariharan S, Venkateswaran T. Effect of carbon nanotube on processing, microstructural, mechanical and ablation behavior of ZrB2–20SiC based ultra-high temperature ceramic composites. Carbon. 2017;111:269.

    Article  CAS  Google Scholar 

  36. Nisar A, Balani K, Ariharan S. Synergistic reinforcement of carbon nanotubes and silicon carbide for toughening tantalum carbide based ultrahigh temperature ceramic. J Mater Res. 2016;31(6):682.

    Article  CAS  Google Scholar 

  37. Asl MS, Zamharir MJ, Ahmadi Z, Parvizi S. Effects of nano-graphite content on the characteristics of spark plasma sintered ZiB2–SiC composites. Mater Sci Eng, A. 2018;716:99.

    Article  Google Scholar 

  38. Asl MS, Nayebi B, Ahmadi Z, Zamharir MJ, Shokouhimehr M. Effects of carbon additives on the properties of ZrB2-based composites: a review. Ceram Int. 2018. https://doi.org/10.1016/j.ceramint.2018.01.214.

    Article  Google Scholar 

  39. Parvizi S, Ahmadi Z, Zamharir MJ, Asl MS. Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB2 nanocomposites. Int J Refract Metals Hard Mater. 2018;25:89. https://doi.org/10.1016/j.ijrmhm.2018.03.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51674035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ng-Ming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, T., Wang, XM., Yang, L. et al. Synthesis and densification of zirconium diboride prepared by carbothermal reduction. Rare Met. 37, 1076–1081 (2018). https://doi.org/10.1007/s12598-018-1178-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1178-8

Keywords

Navigation