Log in

On the sensitivity of some portfolio optimization models using interval analysis

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

In this paper, the performance of the optimal portfolio is studied when the portfolio optimization model is sensitive towards the expected rate of return of the assets. It is justified that any perturbation in the expected return within some bounds provide the decision maker with a set of choices of the optimal portfolio yielding portfolio risk within a range. Due to the perturbation in the parameters, the structure of the portfolio optimization models changes, and the classical approaches for solving these models are not suitable. Here, we represent these models with varying parameters as a system of interval equations and develop a methodology to obtain the set of all possible choices of the optimal portfolio of each model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Algorithm 1

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

References

  1. Mansini, R., Ogryczak, W., Speranza, M.G.: Twenty years of linear programming based portfolio optimization. Eur. J. Oper. Res. 234(2), 518–535 (2014)

    Article  Google Scholar 

  2. Fang, Y., Lai, K., Wang, S.-Y.: Portfolio rebalancing model with transaction costs based on fuzzy decision theory. Eur. J. Oper. Res. 175(2), 879–893 (2006). https://doi.org/10.1016/j.ejor.2005.05.020. (https://www.sciencedirect.com/science/article/pii/S0377221705005102)

    Article  Google Scholar 

  3. Best, M.J., Hlouskova, J.: An algorithm for portfolio optimization with transaction costs. Manage. Sci. 51(11), 1676–1688 (2005). (http://www.jstor.org/stable/20110455)

    Article  Google Scholar 

  4. Fabozzi, F.J., Markowitz, H.M., Gupta, F.: Portfolio selection, Handbook of finance 2, (2008)

  5. Konno, H., Koshizuka, T.: Mean-absolute deviation model. IIE Trans. 37(10), 893–900 (2005). https://doi.org/10.1080/07408170591007786

    Article  Google Scholar 

  6. Meng, K., Yang, H., Yang, X., Wai Yu, C.K.: Portfolio optimization under a minimax rule revisited. Optimization 71(4), 877–905 (2022). https://doi.org/10.1080/02331934.2021.1928665

    Article  Google Scholar 

  7. Lin, Y., Liu, S., Yang, H., Wu, H.: Stock trend prediction using candlestick charting and ensemble machine learning techniques with a novelty feature engineering scheme. IEEE Access 9, 101433–101446 (2021). https://doi.org/10.1109/ACCESS.2021.3096825

    Article  Google Scholar 

  8. Mahmoodi, A., Hashemi, L., Jasemi, M.: Develop an integrated candlestick technical analysis model using meta-heuristic algorithms. EuroMed J. Bus. (2023). https://doi.org/10.1108/EMJB-02-2022-0034

    Article  Google Scholar 

  9. Mahmoodi, A., Hashemi, L., Mahmoodi, A., Mahmoodi, B., Jasemi, M.: Novel comparative methodology of hybrid support vector machine with meta-heuristic algorithms to develop an integrated candlestick technical analysis model. J. Capital Markets Stud. (2023). https://doi.org/10.1108/JCMS-04-2023-0013

    Article  Google Scholar 

  10. Mahmoodi, A., Hashemi, L., Jasemi, M., Laliberté, J., Millar, R.C., Noshadi, H.: A novel approach for candlestick technical analysis using a combination of the support vector machine and particle swarm optimization. Asian J. Econ. Bank. 7(1), 2–24 (2023). https://doi.org/10.1108/AJEB-11-2021-0131

    Article  Google Scholar 

  11. Mahmoodi, A., Hashemi, L., Jasemi, M., Mehraban, S., Laliberté, J., Millar, R.C.: A developed stock price forecasting model using support vector machine combined with metaheuristic algorithms. Opsearch 60(1), 59–86 (2023). https://doi.org/10.1007/s12597-022-00608-x

    Article  Google Scholar 

  12. Mahmoudi, A., Hashemi, L., Jasemi, M., Pope, J.: A comparison on particle swarm optimization and genetic algorithm performances in deriving the efficient frontier of stocks portfolios based on a ean-lower partial moment model. Int. J. Financ. Econ. 26(4), 5659–5665 (2021). https://doi.org/10.1002/ijfe.2086

    Article  Google Scholar 

  13. Ahmadi, E., Jasemi, M., Monplaisir, L., Nabavi, M.A., Mahmoodi, A., Amini Jam, P.: New efficient hybrid candlestick technical analysis model for stock market timing on the basis of the support vector machine and heuristic algorithms of imperialist competition and genetic. Expert Syst. with Appl. 94, 21–31 (2018). https://doi.org/10.1016/j.eswa.2017.10.023

    Article  Google Scholar 

  14. Mehrjoo, S., Jasemi, M., Mahmoudi, A.: A new methodology for deriving the efficient frontier of stocks portfolios: an advanced risk-return model. J. AI Data Mining. 2(2), 113–123 (2014). https://doi.org/10.22044/jadm.2014.305

    Article  Google Scholar 

  15. Kumar, P., Panda, G.: Solving nonlinear interval optimization problem using stochastic programming technique. Opsearch 54, 752–765 (2017). https://doi.org/10.1007/s12597-017-0304-y

    Article  Google Scholar 

  16. Kumar, P., Bhurjee, A.K.: An efficient solution of nonlinear enhanced interval optimization problems and its application to portfolio optimization. Soft. Comput. 25(7), 5423–5436 (2021). https://doi.org/10.1007/s00500-020-05541-z

    Article  Google Scholar 

  17. Kumar, P., Behera, J., Bhurjee, A.: Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis. Opsearch 59(1), 41–77 (2022). https://doi.org/10.1007/s12597-021-00531-7

    Article  Google Scholar 

  18. Roy, P., Panda, G., Qiu, D.: Gradient-based descent linesearch to solve interval-valued optimization problems under Gh-differentiability with application to finance. J. Comput. Appl. Math. 436, 115402 (2024). https://doi.org/10.1016/j.cam.2023.115402

    Article  Google Scholar 

  19. Sahu, B., Bhurjee, A., Kumar, P.: Efficient solutions for vector optimization problem on an extended interval vector space and its application to portfolio optimization. Expert Syst. Appl. 249, 123653 (2024). https://doi.org/10.1016/j.eswa.2024.123653

    Article  Google Scholar 

  20. Best, M.J., Grauer, R.R.: On the sensitivity of mean-variance-efficient portfolios to changes in asset means: some analytical and computational results. Rev. Financ. Stud. 4(2), 315–342 (1991)

    Article  Google Scholar 

  21. Gourieroux, C., Laurent, J., Scaillet, O.: Sensitivity analysis of values at risk. J. Emp. Financ. 7(3), 225–245 (2000). https://doi.org/10.1016/S0927-5398(00)00011-6

    Article  Google Scholar 

  22. Guigues, V.: Sensitivity analysis and calibration of the covariance matrix for stable portfolio selection. Comput. Optim. Appl. 48(3), 553–579 (2011). https://doi.org/10.1007/s10589-009-9260-7

    Article  Google Scholar 

  23. DeMiguel, V., Garlappi, L., Uppal, R.: Optimal versus Naive diversification: how inefficient is the 1/n portfolio strategy? Rev. Financ. Stud. 22(5), 1915–1953 (2009)

    Article  Google Scholar 

  24. Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivariate Anal. 88(2), 365–411 (2004). https://doi.org/10.1016/S0047-259X(03)00096-4

    Article  Google Scholar 

  25. Palczewski, A., Palczewski, J.: Theoretical and empirical estimates of mean-variance portfolio sensitivity. Eur. J. Operat. Res. 234(2), 402–410 (2014). https://doi.org/10.1016/j.ejor.2013.04.018

    Article  Google Scholar 

  26. Michaud, R.O., Michaud, R.O.: Efficient asset management a practical guide to stock portfolio optimization and asset allocation. Oxford University Press, (2008)

  27. Chopra, V.K., Ziemba, W.T.: The effect of errors in means, Variances, and Covariances on Optimal Portfolio Choice, World Scientific, (2013), Ch. 21, pp. 365–373. ar**v:https://www.worldscientific.com/doi/pdf/10.1142/9789814417358_0021, https://doi.org/10.1142/9789814417358_0021. https://www.worldscientific.com/doi/abs/10.1142/9789814417358_0021

  28. Brunel, J.L., Idzorek, C.T.M., Mulvey, C.J.M.: Principles of asset allocation. Portfolio Management in Practice, Volume 1: Investment Management 1, 211 (2020)

    Google Scholar 

  29. Grauer, R.: Is the market Portfolio mean-variance efficient?, World Scientific, (2021), Ch. 47, pp. 1763–1787. ar**v:https://www.worldscientific.com/doi/pdf/10.1142/9789811202391_0047, https://doi.org/10.1142/9789811202391_0047. https://www.worldscientific.com/doi/abs/10.1142/9789811202391_0047

  30. Paskaramoorthy, A., Woolway, M.: An empirical evaluation of sensitivity bounds for mean-variance portfolio optimisation. Financ. Res. Lett. 44, 102065 (2022). https://doi.org/10.1016/j.frl.2021.102065. (https://www.sciencedirect.com/science/article/pii/S154461232100146X)

    Article  Google Scholar 

  31. Deng, X.-T., Li, Z.-F., Wang, S.-Y.: A minimax portfolio selection strategy with equilibrium. Eur. J. Operat. Res. 166(1), 278–292 (2005). https://doi.org/10.1016/j.ejor.2004.01.040

    Article  Google Scholar 

  32. Wu, M., Kong, D.-W., Xu, J.-P., Huang, N.-J.: On interval portfolio selection problem. Fuzzy Optim. Decis. Making 12, 289–304 (2013). https://doi.org/10.1007/s10700-013-9155-z

    Article  Google Scholar 

  33. Alefeld, G., Herzberger, J.: Introduction to interval computation. Academic press, UK (2012)

    Google Scholar 

  34. Hartman, D., Hladík, M., Ríha, D.: Computing the spectral decomposition of interval matrices and a study on interval matrix powers. Appl. Math. Comput. 403, 126174 (2021). https://doi.org/10.1016/j.amc.2021.126174

    Article  Google Scholar 

  35. Singh, S., Panda, G.: SVD enclosure of a class of interval matrices. Inf. Sci. 666, 120386 (2024). https://doi.org/10.1016/j.ins.2024.120386

    Article  Google Scholar 

  36. Singh, S., Panda, G.: Generalized eigenvalue problem for interval matrices. Arch. Math. 121(3), 267–278 (2023). https://doi.org/10.1007/s00013-023-01897-4

    Article  Google Scholar 

  37. Singh, S., Panda, G.: Singular value decomposition of matrices with uncertain parameters, in. International Conference on Futuristic Technologies (INCOFT) 2022, pp. 1–5 (2022). https://doi.org/10.1109/INCOFT55651.2022.10094494

  38. Rohn, J., Shary, S.P.: Interval matrices: regularity generates singularity. Linear Algebra Appl. 540, 149–159 (2018). https://doi.org/10.1016/j.laa.2017.11.020

    Article  Google Scholar 

  39. Rohn, J., Farhadsefat, R.: Inverse interval matrix: a survey. Electron. J. Linear Algebra 22, 704–719 (2011). https://doi.org/10.13001/1081-3810.1468

    Article  Google Scholar 

  40. Rohn, J.: Systems of linear interval equations. Linear Algebra Appl. 126, 39–78 (1989). https://doi.org/10.1016/0024-3795(89)90004-9

    Article  Google Scholar 

  41. Rohn, J.: Positive definiteness and stability of interval matrices. SIAM J. Matrix Anal. Appl. 15(1), 175–184 (1994). https://doi.org/10.1137/S0895479891219216

    Article  Google Scholar 

  42. Hager, W.: Applied numerical linear algebra, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, (2022). https://books.google.co.in/books?id=SDRZEAAAQBAJ

  43. Hladik, M.: Optimal value bounds in nonlinear programming with interval data. TOP 19(1), 93–106 (2011). https://doi.org/10.1007/s11750-009-0099-y

    Article  Google Scholar 

  44. Hladík, M., Daney, D., Tsigaridas, E.: Bounds on real eigenvalues and singular values of interval matrices. SIAM J. Matrix Anal. Appl. 31(4), 2116–2129 (2010). https://doi.org/10.1137/090753991

    Article  Google Scholar 

  45. Rossi, M.: The capital asset pricing model: a critical literature review. Global Bus. Econ. Rev. 18(5), 604–617 (2016). https://doi.org/10.1504/GBER.2016.078682

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their careful reading and helpful comments, which greatly improved the paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Sarishti Singh: Conceptualization, Formal analysis, Methodology, Software, Validation, Original draft writing, Writing - Review & Editing. Geetanjali Panda: Formal analysis, Investigation, Methodology, Writing - Review & Editing, Supervision.

Corresponding author

Correspondence to Geetanjali Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Panda, G. On the sensitivity of some portfolio optimization models using interval analysis. OPSEARCH (2024). https://doi.org/10.1007/s12597-024-00787-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12597-024-00787-9

Keywords

Mathematics Subject Classification

Navigation