Log in

Larvicidal Activity of Neolamarckia cadamba Against the Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus

  • Research Article
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

The excessive use of conventional insecticides to Culicidae leads to the emergence of mosquitoe resistant, adverse environmental and human effects. Therefore, the present study was carried out to explore the larvicidal efficacy of petroleum ether, chloroform, ethyl acetate and methanol extracts of roots, leaves, and bark of Neolamarckia cadamba against the early 4th instar larvae of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus at concentrations ranging from 12.5 to 200 ppm under laboratory conditions. The root extracts showed the highest larvicidal potential than the leaf and bark extracts. After 24 h of exposure period, the highest larvicidal activities were observed in the methanol extract of roots with LC50 value of 43.29 and LC90 value of 202.85 ppm against An. stephensi; LC50 value of 70.82 and LC90 value of 253.73 ppm against Ae. Aegypti and LC50 value of 99.51 and LC90 value of 311.02 ppm against the Cx. Quinquefasciatus, respectively. Thus, the plant extracts of N. cadamba showed considerable mosquito larvicidal activities and can be considered for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharyya, S., G.K. Dash, and S. Mondal. 2010. Studies on glucose lowering efficacy of the Anthocephalus cadamba (roxb.) roots. International Journal of Pharma and Bio Sciences 1: 1–9.

    Google Scholar 

  • Addiss, D.G. 2013. Global elimination of lymphatic filariasis: a mass uprising of compassion. PLOS Neglected Tropical Diseases 7: e2264.

    PubMed  PubMed Central  Google Scholar 

  • Alam, M.A., R. Akter, N. Subhan, M.M. Rahman, M.M. Majumder, and S.D.N. Sarker. 2008. Antidiarrhoeal property of the hydroethanolic extract of the fruits of Anthocephalus cadamba. Revista Brasileira de Farmacognosia 18: 155–159.

    Google Scholar 

  • Ambujakshi, H.R., T.A. Silvia, Y. Kanchana, R. Patel, H. Thakkar, and H. Shyamnanda. 2009. Analgesic activity of Anthocephalus cadamba leaf extract. Journal of Pharmacy Research 2: 1279–1280.

    Google Scholar 

  • Aziz, A.T., S.A. Al-Shami, J.A. Mahyoub, M. Hatabbi, A.H. Ahmad, and C.S. Rawi. 2014. An update on the incidence of dengue gaining strength in Saudi Arabia and current control. Approaches for its vector mosquito. Parasites & Vectors 7: 258.

    Google Scholar 

  • Benelli, G. 2015. Plant-borne ovicides in thefight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitology Research 114: 3201–3212.

    PubMed  Google Scholar 

  • Benelli, G., A. Lo-Iacono, A. Canale, and H. Mehlhorn. 2016. Mosquito vectors and the spread of cancer: an overlooked connection? Parasitology Research 115: 2131–2137.

    PubMed  Google Scholar 

  • Benelli, G., and H. Mehlhorn. 2016. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitology Research 115: 747–754.

    Google Scholar 

  • Benli, A.C.K., M. Selvi, A. Sepici-Dincel, R. Sarikaya, M.Z. Yildirim, and A. Ozkul. 2009. Acute toxicity of beta-cypermethrim on Nile tilapia (Oreochromis niloticus L.) finderlings. Journal of Environmental Protection and Ecology 10: 104–109.

    CAS  Google Scholar 

  • Bossche, V., and J.A. Coetzer. 2008. Climate change and animal health in Africa. Revue Scientifique et Technique 27: 551–562.

    PubMed  Google Scholar 

  • Cantrell, C.L., A. Ali, S.O. Duke, and I.A. Khan. 2011. Identification of mosquito biting deterrent constituents from the Indian folk remedy plant Jatropha curcas. Journal of Medical Entomology 48: 836–845.

    CAS  PubMed  Google Scholar 

  • Chopra, R.N., S.L. Nayar, and C. Chopra. 1956. Glossary of Indian Medicinal Plants. New Delhi: Council of Scientific and Industrial Research.

    Google Scholar 

  • Dhanasekaran, S., K. Krishnappa, A. Anandan, and K. Elumalai. 2013. Larvicidal, ovicidal and repellent activity of selected indigenous medicinal plants against malarial vector Anopheles stephensi (Liston.), dengue vector, Aedes aegypti (Linn.) and Japanese encephalitis vector, Culex tritaeniorynchus (Giles.) (Diptera: Culicidae). Journal of Agricultural Science and Technology 9: 29–47.

    Google Scholar 

  • Finney, D.J. 1971. Probit Analysis, 3rd ed. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ghosh, A., N. Chowdhury, and G. Chandra. 2012. Plant extracts as potential mosquito larvicides. Indian Journal of Medical Research 135: 581–598.

    CAS  PubMed  Google Scholar 

  • Govindarajan, M., and R. Sivakumar. 2014. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae). Parasitology Research 113: 1435–1449.

    PubMed  Google Scholar 

  • Gyapong, J., M. Gyapong, M. Yellu, K. Anakwah, G. Amofah, and M. Bockarie. 2010. Integration of control of neglected tropical diseases into health-care systems: challenges and opportunities. Lancet 375(9709): 160–165.

    PubMed  Google Scholar 

  • Hoel, D., J.W. Pridgeon, U.R. Bernier, K.M. Chauhan, and C.L. Cantrell. 2010. Departments of defense and agriculture team up to develop new insecticides for mosquito control. Wing Beats 21: 19–34.

    Google Scholar 

  • Islam, T., A. Das, K.B. Shill, P. Karmakar, S. Islam, and M.M. Sattar. 2015. Evaluation of membrane stabilizing, anthelmintic, antioxidant activity with phytochemical screening of methanolic extract of Neolamarckia cadamba fruits. Journal of Medicinal Plants Research 9: 151–158.

    CAS  Google Scholar 

  • Jayaprasad, B., S. Sharavanan, and K. Veerakumar. 2015. Effect of Chloroxylon swietenia bark extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi larvae. Parasitology Research 114: 4219–4223.

    Google Scholar 

  • Jeyalalitha, T., K. Murugan, and M. Umayavalli. 2015. Preliminary phytochemical screening of leaf extracts of Anthocephalus cadamba. International Journal of Recent Scientific Research 6: 6608–6611.

    Google Scholar 

  • Kaushal, K., A.K. Sharma, K. Sarita, P. Sunita, S. Manas, and L.S. Chauhan. 2011. Multiple insecticide resistance/susceptibility status of Culex quinquefasciatus, principal vector of bancroftian filariasis from filaria endemic areas of Northern India. Asian Pacific Journal of Tropical Medicine 4: 426–429.

    Google Scholar 

  • Khare, C.P. 2008. Indian Medicinal Plants: An Illustrated Dictionary, 55. New York: Springer.

    Google Scholar 

  • Klempner, M.S., T.R. Unnasch, and L.T. Hu. 2007. Taking a bite out of vector-transmitted infectious diseases. The New England Journal of Medicine 356: 2567–2569.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kodangula, S.C., A. Borthakur, and S.P. Kodangala. 2010. Anti-inflammatory effect of the methanol extract from Anthocephalus cadamba stem bark in animal models. International Journal of Plant Biology 1: 30–32.

    Google Scholar 

  • Kovendan, K., K. Murugan, and S. Vincent. 2012. Evaluation of larvicidal activity of Acalypha alnifolia Kleinex Willd. (Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae). Parasitology Research 110: 571–581.

    PubMed  Google Scholar 

  • Kumar, A., S.R. Chowdhury, K.K. Jatte, T. Chakrabarti, H.K. Majumder, T. Jha, and S. Mukhopadhyay. 2015. Anthocephaline, a new indole alkaloid and cadambine, a potent inhibitor of DNA topoisomerase IB of Leishmania donovani, isolated from Anthocephalus cadamba. Natural Product Communication 10: 297–299.

    Google Scholar 

  • Mahnaz, K., F. Alireza, V. Hassan, S. Mahdi, A.M. Reza, and H. Abbas. 2012. Larvicidal activity of essential oil and methanol extract of Nepeta menthoides against malaria vector Anopheles stephensi. Asian Pacific Journal of Tropical Medicine 5: 962–965.

    CAS  PubMed  Google Scholar 

  • Maurya, P., L. Mohan, P. Sharma, L. Batabyal, and C.N. Srivastava. 2007. Larvicidal efficacy of Aloe barbadensis and Cannabis sativa against the malaria vector Anopheles stephensi (Diptera: Culicidae). Entomological Research 37: 153–156.

    Google Scholar 

  • Mayer, S.V., R.B. Tesh, and N. Vasilakis. 2017. The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Tropica 166: 155–163.

    PubMed  Google Scholar 

  • Moulin, E., K. Selby, P. Cherpillod, L. Kaiser, and N. Boillat-Blanco. 2016. Simultaneous outbreaks of Entomological Research dengue, chikungunya and Zika virus infections: Diagnosis challenge in a returning traveller with nonspecific febrile illness. New Microbes and New Infections 11: 6–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak, J.B., and B. Mohan. 2015. Larvicidal activity of Rauvolfia serpentina L. fruits against Aedes aegypti mosquito larvae. International Research Journal of Biological Sciences 4: 54–56.

    Google Scholar 

  • Norris, L.C., and D.E. Norris. 2011. Insecticide resistance in Culex quinquefasciatus mosquitoes after the introduction of insecticide-treated bed nets in Macha, Zambia. Journal of Vector Ecology 36: 411–420.

    PubMed  PubMed Central  Google Scholar 

  • Panneerselvam, C., K. Murugan, K. Kovendan, P.K. Mahesh, and J. Subramaniam. 2013. Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family:Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston. (Diptera: Culicidae). Asian Pacific Journal of Tropical Medicine 6(2): 102–109.

    CAS  PubMed  Google Scholar 

  • Patel, D.A., V.C. Dirji, A.H. Bariya, K.R. Patel, and R.N. Sonpal. 2011. Evaluation of antifungal activity of Neolamarckia cadamba (roxb.) bosser leaf and bark extract. International Research Journal of Pharmacy 2: 192–193.

    Google Scholar 

  • Rajasekaran, A., and G. Duraikannan. 2012. Larvicidal activity of plant extracts on Aedes Aegypti L. Asian Pacific Journal of Tropical Biomedicine 2: S1578–S1582.

    Google Scholar 

  • Sanadhya, I., and A. Durve. 2014. Isolation and characterisation of antimicrobial compound from fruits of Anthocephalus indicus A. Rich. International Journal of Pharma and Bio Sciences 6: 285–291.

    CAS  Google Scholar 

  • Santos, S.R.L., M.A. Melo, A.V. Cardoso, R.L.C. Santos, D.P. De Sousa, and S.C.H. Cavalcanti. 2011. Structure–activity relationships of larvicidal monoterpenes and derivatives against Aedes aegypti Linn. Chemosphere 84: 150–153.

    CAS  PubMed  Google Scholar 

  • Shaalan, E.A.S., B.D. Canyon, M.W.F. Younes, H. Abdel-Wahaba, and A.H. Mansour. 2005. A review of botanical phytochemicals with mosquitocidal potential. Environment International 31: 1149–1166.

    CAS  PubMed  Google Scholar 

  • Thirupathi, J., K. Murugan, M. Umayavalli, and V. Sivapriya. 2016. Phytochemical screening of leaf extract of Anthocephalus cadamba and its larvicidal, pupicidal, igr activity on Culex quinquefasciatus (Dipthera). International Journal of Recent Scientific Research 7: 11498–11503.

    Google Scholar 

  • Umachigi, S.P., G.S. Kumar, K.N. Jayaveera, D.V.K. Kishore, K.C.K. Ashok, and R. Dhanpal. 2007. Antimicrobial, wound healing and antioxidant activities of Anthocephalus cadamba. African Journal of Traditional, Complementary and Alternative Medicines 4: 481–487.

    Google Scholar 

  • World Health Organization. 2005. Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. Geneva.

  • World Health Organization. 2010. Malaria. Fact sheet No. 94. Geneva.

  • World Health Organization. 2014. Dengue and Severe Dengue. Fact sheet No. 117. Geneva.

Download references

Acknowledgements

We are thankful to The Director, Centre for Research in Medical Entomology (ICMR-Government of India), Madurai for the supply of mosquito eggs/rafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Venkatesalu.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.I., Venkatesalu, V. Larvicidal Activity of Neolamarckia cadamba Against the Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Proc Zool Soc 73, 227–234 (2020). https://doi.org/10.1007/s12595-020-00323-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-020-00323-9

Keywords

Navigation