Log in

Morphology and Chemistry of Zircons from the Paleoproterozoic Cu (±Mo±Au) Hosting Granitoids of Malanjkhand Mine Area, Central India

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Morphology and chemistry of zircons from Paleoproterozoic granitoids (~2470 Ma) of Malanjkhand mine area, central India have been used to understand nature of parental magma and its evolutionary history. External morphology of nonmetamict zircons belongs to S3, S1-2, G1, P2, S24 and S25 subtypes of Pupin’s typological scheme, which crystallized in a calc-alkaline, metaluminous hybridizing magma. The Zr/Hf ratios of zircons point to a low degree of differentiation of parental magma. Most zircons bear low sum of rare earth elements (∑REE<700 ppm) indicating late stage of crystallization, whereas a zircon with anomalously high LREE and ∑REE probably indicates at an early stage of its crystallisation in the absence of other REE bearing accessory phases or might have been influenced later by hydrothermal fluids. The Nb content of zircons is similar to those commonly formed in high-K, calc-alkaline granitoid magma series. The zircon (Th/U>1) with high ∑REE (5019 ppm) and Ti (56 ppm) contents provides zircon crystallization temperature (TZr) of 938°C suggesting its crystallisation in a relatively high-T intermediate magma composition. However, zircons with Th/U<1 bear Ti content below the detection limit (33 ppm) due to their crystallization in a relatively more evolved aluminous melt fraction of parental calc-alkaline magma. All zircons exhibit positive Ce- and negative Eu-anomalies, which probably indicate mildly oxidising magma condition of zircon crystallization synchronous with plagioclase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharyya, S. K. and Roy, A. (2000) Tectonothermal history of the Central Indian tectonic zone and reactivation of major faults/shear zones. Jour. Geol. Soc. India, v.55, pp.239–256.

    Google Scholar 

  • Asthana, D., Kumar, H., Balakrishnan S., **a, Q. and Feng, M. (2016). An early Cretaceous analogue of the ~2.5 Ga Malanjkhand porphyry Cu deposit, Central India. Ore Geol. Rev., v.72, pp.1197–1212.

    Article  Google Scholar 

  • Bea, F. (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Jour. Petrol., v.37, pp.521–552.

    Article  Google Scholar 

  • Belousova, E.A., Griffin, W.L. and O’Reilly, S.Y. (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modeling: examples from eastern Australian granitoids. Jour. Petrol., v.47, pp.329–353.

    Article  Google Scholar 

  • Benisek, A. and Finger, F. (1993) Factors controlling the development of prism faces in granite zircons: a microprobe study. Contrib. Mineral. Petrol., v.114, pp.441–451.

    Article  Google Scholar 

  • Bhargava, M. and Pal, A.B. (1999) Anatomy of a porphyry copper deposit-Malanjkhand. Madhya Pradesh. Jour. Geol. Soc. India, v.53, pp.675–691.

    Google Scholar 

  • Bhargava, M. and Pal, A.B. (2000) Cu-Mo-Au metallogeny associated with Proterozoic tectono-magmatism in Malanjkhand porphyry copper district, M.P. Jour. Geol. Soc. India, v.56, pp. 395–413.

    Google Scholar 

  • Broska, I. and Petrík, I. (2014). Accessory phases in the genesis of the igneous rocks. In: Kumar, S., Singh, R.N. (Eds.), Modelling of Magmatic and Allied Processes. Soc. Earth Sci., Ser, v.83, pp.109–149.

    Google Scholar 

  • Corfu, F., Hanchar, J. M., Hoskin, P. W. O. and Kinny, P. (2003). Atlas of zircon textures. In: Hanchar, J. M. and Hoskin, P. W. O. (Eds.), Zircon. Reviews in Mineralogy and Geochemistry, v.53, pp.469–499.

    Article  Google Scholar 

  • Ferry, J.M. and Watson, E.B. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol., v.154, pp.429–437.

    Article  Google Scholar 

  • Fu, B., Mernagh, T.P., Kita, N.T., Kemp, A.I.S. and Valley, J.W. (2009) Distinguishing magmatic zircon from hydrothermal zircon: A case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia. Chemical Geol., v.259, pp.131–142.

    Article  Google Scholar 

  • Griffin, W.L., Wang, X., Jackson S.E., Pearson, N.J., O’Reilly, S.Y., Xua, X. and Zhou, X. (2010) Zircon chemistry and magma mixing, SE China: Insitu analysis of Hf isotopes, Tonglu and **tan igneous complexes. Lithos, v.61, pp.237–269.

    Article  Google Scholar 

  • Heaman, L. M., Bowins, R. and Crocket, J. (1990). The chemical composition of igneous zircon suites: implications for geochemical tracer studies. Geochim. Cosmochim. Acta, v.54, pp.1597–1607.

    Article  Google Scholar 

  • Hönig, S., Èopjaková1, R., Škoda, R., Novák, M., Dolejš, D., Leichmann, J. and Galiová, M.V. (2014) Garnet as a major carrier of the Y and REE in the granitic rocks: An example from the layered anorogenic granite in the Brno Batholith, Czech Republic. Amer. Mineral., v.99, pp.1922–1941.

    Article  Google Scholar 

  • Hoskin, P. W. O. and Schaltegger, U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar, J.M. and Hoskin, P.W.O. (Eds.), Zircon. Reviews in Mineralogy and Geochemistry, v.53, pp.27–62.

    Article  Google Scholar 

  • Hoskin, P.W.O. (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta, v.69, pp.637–648.

    Article  Google Scholar 

  • Hoskin, P.W.O., Kinny, P.D. and Wyborn, D. (1998) Chemistry of hydrothermal zircon: investigating timing and nature of water-rock interaction. In: Water-Rock Interaction, WRI-9. Arehart, G.B., Hulston, J.R. (Eds.), A.A. Balkema, Rotterdam, pp.545–548.

    Google Scholar 

  • Jain, S.C., Yedekar, D.B., and Nair, K.K.K. (1991). Central Indian Shear Zone: a major pre-Cambrian crustal boundary. Jour. Geol. Soc. India., v.37, pp. 521–531.

    Google Scholar 

  • Kirkland, C.L., Smithies, R.H., Taylor, R.J.M., Evans, N. and McDonald, B. (2015) Zircon Th/U ratios in magmatic environs. Lithos, v. 212–215, pp. 397–414.

    Article  Google Scholar 

  • Kumar, S. and Rino, V. (2006). Mineralogy and geochemistry of microgranular enclaves in Palaeoproterozoic Malanjkhand granitoids, central India: evidence of magma mixing, mingling, and chemical equilibration. Contrib. Mineral. Petrol., v.152, pp.591–609.

    Article  Google Scholar 

  • Kumar, S., Rino, V., and Pal, A.B. (2004a) Field evidence of magma mixing from microgranular enclaves hosted in Palaeoproterozoic Malanjkhand granitoids, central India. Gondwana Res., v.7, pp.539–548.

    Article  Google Scholar 

  • Kumar, S., Rino, V. and Pal, A.B. (2004b) Typology and geochemistry of microgranular enclaves hosted in Malanjkhand granitoids, central India. Jour. Geol. Soc. India, v.64, pp.277–292.

    Google Scholar 

  • Kumar, S., Rino, V., Hayasaka, Y., Kimura, K., Raju, S., Terada, K. and Pathak, M. (2017) Contribution of Columbia and Gondwana Supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: Constraints from U-Pb SHRIMP zircon geochronology and geochemistry. Lithos, v.277, pp. 356–375.

    Article  Google Scholar 

  • Lankvelt, A. V., Schneider, D. A., Biczok, J., McFarlane, C. R. M. and Hattori, K. (2016) Decoding zircon geochronology of igneous and alteration events based on chemical and microstructural features: a study from the Western Superior Province, Canada, Jour. Petrol., v.57, pp. 1309–1334

    Article  Google Scholar 

  • Lawrie, K.C., Mernagh, T.P., Ryan, C.G., van Achterbergh, E. and Black, L.P. (2007) Chemical fingerprinting of hydrothermal zircons: an example from the Gidginbung high sulphidation Au–Ag–(Cu) deposit, Australia. Proc. Geologists’ Assoc., v.118, pp.37–46.

    Article  Google Scholar 

  • Levinson, A. A. and Borup, R. A. (1960) High hafnium zircon from Norway. Amer. Mineral., v.45, pp.562–565.

    Google Scholar 

  • Mall, D.M., Reddy, P.R. and Mooney, W.D. (2008) Collision tectonics of the Central Indian Suture zone as inferred from a deep seismic sounding study. Tectonophysics, v.460, pp.116–123.

    Article  Google Scholar 

  • Miller, J., Matzel, J., Miller, C., Burgess, S. and Miller, R. (2007). Zircon growth and recycling during the assembly of large, composite arc plutons. Jour. Volcanol. Geotherm. Res., v.167, pp.282–299.

    Article  Google Scholar 

  • Nakamura, N. (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta, v.38, pp.757–775.

    Article  Google Scholar 

  • Nardi, L.V.S., Formoso, M.L.L., Müller, I.F., Fontana, E., Jarvis, K. and Lamarão, C. (2013) Zircon/rock partitition coefficints of REEs, Y, Th, U, Nb and Ta in granitic rocks: Uses for provenance and mineral exploration purposes. Chemical Geol., v.335, pp.1–7.

    Article  Google Scholar 

  • Nehru, C.E. and Sikka, D.B. (2018) Petrochemistry of dyke rocks from the Paleoproterozoic Malanjkhand porphyry copper mine, India: a possible link to the mineralization. Jour. Appl. Geochem., v.20, pp.1–28.

    Google Scholar 

  • Pal, A.B. and Bhargava, M. (1998) Regional geology and petrochemistry of Proterozoic Cu-Mo mineralization in Malanjkhand granitoids, Madhya Pradesh. In: B.S. Paliwal, (Ed.), The Indian Precambrian. Scientific Publ. (India), Jodhpur, pp.333–350.

    Google Scholar 

  • Pandit, D. (2014) Chloritization in Paleoproterozic granite ore system at Malanjkhand, Central India: mineralogical studied and mineral fluid equilibria modelling. Curr. Sci., v.106, pp.565–581.

    Google Scholar 

  • Pandit, D. (2018) Crystallization evolution of accessory minerals in palaeoproterozoic granites of Bastar Craton, India. Curr. Sci., v.114, pp. 2329–2342.

    Google Scholar 

  • Pandit, D. and Panigrahi, M.K. (2012) Comparative petrogenesis and tectonics of Paleoproterozoic Malanjkhand and Dongargarh granitoids, Central India. Jour. Asian Earth Sci., v. 50, pp. 14–26.

    Article  Google Scholar 

  • Pandit, D., Panigrahi, M. K., and Moriyama, T. (2014a) Constrains from magmatic and hydrothermal epidotes on crystallization of granitic magma and sulphide mineralization in Paleoproterozoic Malanjkhand Granitoid, Central India. Chem. der Erde, v.74, pp.715–733.

    Article  Google Scholar 

  • Pandit, D., Panigrahi, M. K., Moriyama, T., Ishihara, S. (2014b) Comparative geochemical, magnetic susceptibility, and fluid inclusion studies on Paleoproterozoic Malanjkhand and Dongargarh granitoids, central India and implications to metallogeny. Mineral. Petrol., v.108, pp.663–680.

    Article  Google Scholar 

  • Panigrahi M.K. and Mookherjee A. (1997): The Malanjkhand coper (+molybdenium) deposit, India: mineralisation from a low temperature ore fluid of granitoid affiliation. Mineralium Deposita, v.32, pp.133–148.

    Article  Google Scholar 

  • Panigrahi, M. K., Brendan, R. B., Misra, K. C. and Naik, R. K. (2004) Age of granitic activity associated with copper molybdenum mineralization as Malanjkhand, Central India. Miner. Deposita, v.39, pp.670–677.

    Article  Google Scholar 

  • Panigrahi, M.K., Bream, B.R., Mishra, K.C. and Naik, R.K. (2004) Age of granitic activity associated with copper-molybdenum mineralization at Malanjkhand, central India. Mineral. Deposita, v.39, pp.670–677.

    Article  Google Scholar 

  • Pettke, T., Audétat, A., Schaltegger, U. and Heinrich, C.A. (2001) Zircon trace element chemistry by LA-ICP-MS: a monitor for the magmatic-tohydrothermal evolution of a crystallizing pluton? Jour. Conf. Abstr., v.6, pp.680.

    Google Scholar 

  • Pettke, T., Audetat, A., Schaltegger, U., Heinrich, C.A., 2005. Magmatic-tohydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia)—Part II: evolving zircon and thorite trace element chemistry. Chemical Geol., v.220, pp.191–213.

    Article  Google Scholar 

  • Pupin, J. P. (1980) Zircon and granite petrology. Contrib. Mineral. Petrol., v.73, pp.207–220.

    Article  Google Scholar 

  • Pupin, J. P. (2000) Granite genesis related to geodynamics from Hf–Y in zircon. Trans. Roy. Soc. Edinb. Earth Sci., v.91, pp.245–256.

    Article  Google Scholar 

  • Rai, K.L. and Venkatesh, A.S. (1993) Geological setting and nature of copper and molybdenum mineralization in the intra-continental acid magmatic regime of Malanjkhand, central India. Resource Geology, Special Issue, v.15, pp.285–297.

    Google Scholar 

  • Ramachandra, H.M. and Roy, A. (1998). Geology of intrusive granitoids with particular reference to Dongargarh granite and their impacton tectonic evolution of the Precambrian in central India. Indian Miner., v.52 (1–2), pp.15–32.

    Google Scholar 

  • Roy, A., Prasad, M.H., Bhowmik, S.K. (2001) Recognition of pre-Grenvillian and Grenvillian tectonothermal events in the Central Indian Tectonic Zones: implications on Rodinian crustal assembly. Gondwana Res., v.4, pp.755–757.

    Article  Google Scholar 

  • Rubatto, D. (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem. Geol., v.184, pp.123–138.

    Article  Google Scholar 

  • Sawka, W.N. (1988) REE and trace element variation in accessory minerals and hornblende from the strongly zoned McMurry Meadows Pluton, California. Trans Roy Soc. Edinburgh: Earth Sci., v.79, pp.157–168.

    Article  Google Scholar 

  • Schaltegger, U., Schmitt, A.K. and Horstwood, M.S.A. (2015) U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical Geol., v.402, pp. 89–110.

    Article  Google Scholar 

  • Sikka, D.B. and Nehru, C.E. (1997) Review of Precambrian porphyry Cu-Mo-Au deposits with special reference to Malanjkhand porphyry copper deposits, M.P. Jour. Geol. Soc. India, v.49, pp.239–288.

    Google Scholar 

  • Sikka, D.B. and Nehru, C.E. (2002) Malanjkhand copper deposits, India: is it not a porphyry type? Jour. Geol. Soc. India, v.59, pp.339–362.

    Google Scholar 

  • Sikka, D.B., Petruk, W.C., Nehru, E. and Zhang, Z. (1991) Geochemistry of secondary copper minerals from Proterozoic porphyry copper deposit, Malanjkhand, India. Ore Geol. Rev., v.6, pp.57–290.

    Article  Google Scholar 

  • Stein, H.J., Hannah, J.L., Zimmerman, A. and Markey, R.J. (2006). Mineralization and deformation of the Malanjkhand terrane (2,490–2,440 Ma) along the southern margin of the Central IndianTectonic Zone. Mineralium Deposita, v.40, pp.755–765.

    Article  Google Scholar 

  • Stein, H.J., Hannah, J.L., Zimmerman, A., Markey, R.J., Sarkar, S.C. and Pal, A.B. (2004) A 2.5 Ga porphyry Cu-Mo-Au deposit at Malanjkhand, central India: implications for Late Archean continental assembly. Precambrian Res., v.134, pp.189–226.

    Article  Google Scholar 

  • Taylor, S. R. and McLennan, S. M. (1985) The Continental Crust: its Composition and Evolution. Oxford: Blackwell Scientific, pp.312.

    Google Scholar 

  • Tripathi, C., Ghosh, P.K., Thambi, P.I., Rao, T.V. and Chandra, S. (1981). Elucidation of the stratigraphy and structure of Chilpi group. Geol. Surv. India, Special Publ., v.3, pp.17–30.

    Google Scholar 

  • Vervoort, J. D. and Blichert-Toft, J. (1999). Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. et Cosmochim. Acta, v.63, pp.533–556.

    Article  Google Scholar 

  • Von Knorring, O. and Hornung, G. (1961) Hafnian zircons. Nature, v.190, pp.1098–1099.

    Article  Google Scholar 

  • Wang, X., Griffin, W.L. and Chen, J. (2010) Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Jour., v.44, pp.65–72.

    Article  Google Scholar 

  • Wayne, D.M. and Sinha, A.K. (1992) Stability of zircon U-Pb systematics in a greenschist-grade mylonite: an example from the Rockfish Valley Fault Zone, Central Virginia, USA. Jour. Geol., v.10, pp.593–603.

    Article  Google Scholar 

  • Yedekar, D.B., Jain, S.C., Nair, K.K.K. and Dutta, K.K. (1990). The central Indian Collision Suture, in Precambrian of central India. Geol. Surv. India Spec. Publ., v.28, pp.1–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, D., Gupta, S., Kumar, S. et al. Morphology and Chemistry of Zircons from the Paleoproterozoic Cu (±Mo±Au) Hosting Granitoids of Malanjkhand Mine Area, Central India. J Geol Soc India 93, 257–262 (2019). https://doi.org/10.1007/s12594-019-1171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1171-3

Navigation