Log in

Analysis of time-scaling behaviour in the sequence of aftershocks of the Wenchuan earthquake, China

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Based on the aftershock sequence of the Great Wenchuan earthquake that occurred on 12 May, 2008, the long-term memory and multifractal scaling are analyzed by using MF-DFA method. And we consider aftershocks as a SOC phenomenon. Main findings are as follows: (1) hq values of the aftershock sequence indicates high persistence or long-term memory. (2) The generalized fractal dimensions D(q) presents obvious trend variation, which reveal crisis and critical characteristics of seismogenic dynamical system. (3) The right-skewed spectrum f(α) indicates that the aftershocks are predominated by low magnitude, which gives a characterization of distribution in multiple scales in seismic activity. Its structural morphology is closely related with the dynamical complexity. (4) Aftershock sequence exhibits self-organized criticality because it follows the classical Gutenberg-Richter and Omori Law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, Z.W., Yang, C.H., Wang, LY. and Chen, L.H. (2000) Studies on the multifractals of time and space clustering of earthquakes. Sci. China, Ser. D: Earth Sci., v.43, pp.74–80.

    Google Scholar 

  • Bak, P., Christensen, K., Danon, L. and Scanlon, T. (2002) Unified scaling law for earthquakes. Phys. Rev. Lett., v.88, pp.178501–178504.

    Article  Google Scholar 

  • Bak, P. and Tang, C. (1989) Earthquakes as a self-organized critical phenomenon. Jour. Geophys. Res., v.94, pp.15635–15637.

    Article  Google Scholar 

  • Bak, P., Tang, C. and Wiesenfeld, K. (1987) Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett., v.59, pp.381–384

    Article  Google Scholar 

  • Bak, P., Tang, C. and Wiesenfeld, K. (1988) Self-organizing criticality. Phys. Rev. A, v.38, pp.364–374.

    Article  Google Scholar 

  • Boffetta, G., Carbone, V., Giuliani, P., Veltri, P. and Vulpiani, A. (1999) Power laws in solar flares: self-organized criticality or turbulence? Phys. Rev. Lett., v.83, pp. 4662–4665.

    Article  Google Scholar 

  • Carlson, J.M. and Langer, J.S. (1989) Properties of earthquakes generated by fault dynamics. Phys. Rev. Lett., v.62, pp.2632–2635.

    Article  Google Scholar 

  • Chen, K., Bak, P. and Obukhov, S.P. (1991) Self-organized criticality in a crack-propagation model of earthquakes. Phys. Rev. A, v.43, pp.625–630.

    Article  Google Scholar 

  • Clarke, A.B. (1956) A waiting line process of Markov type. Ann. Math. Statist., v.27, pp.452–459

    Article  Google Scholar 

  • Cowie, P., Vanneste, C. and Sornette, D. (1993) Statistical physics model for spatio-temporal evolution of faults. Jour. Geophys. Res., v.98, pp.21809–21821.

    Article  Google Scholar 

  • Feder, J. (1988) Fractals. Plenum Press, New York. pp 463.

    Book  Google Scholar 

  • Godano, C., Alonzo, M.L. and Volardo, G. (1997) Multifractal approach to time clustering of earthquakes. Application to Mt.Vesuvio Seismicity. Pure Appld. Geophys., v.149, pp.375–390.

    Google Scholar 

  • Guo, Z. and Ogata, Y. (1997) Statistical relations between the parameters of aftershocks in time, space and magnitude. Jour. Geophys. Res., v.102, pp.2857–2873.

    Article  Google Scholar 

  • Gutenberg, B. and Richter, C.F. (1944) Frequency of earthquakes in California. Bull. Seismol. Soc. Am., v.34, pp.185–188.

    Google Scholar 

  • Gutenberg, B. and Richter, C.F. (1956) Earthquake magnitude, intensity, energy and acceleration (second paper). Bull. Seismol Soc. Amer., v.46, pp.105–145.

    Google Scholar 

  • Halsey, T. C., Jensen, M.H., Kadanoff, L.P., Procaccia, I. and Shraiman, B. I. (1986). Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A, v. 33, pp.1141–1151.

    Article  Google Scholar 

  • Huang, Y., Wu, J.P., Zhang, T.Z. and Zhang, D.N. (2008) Relocation of the M 8.0 Wenchuan earthquake and its after-shock sequence. Sci. China, Ser. D, Earth Sci., v.51, pp.1703–1711.

    Article  Google Scholar 

  • Ito, K. and Matsuzaki, M. (1990) Earthquakes as a self-organized critical phenomena. Jour. Geophys. Res., v.95, pp. 6853–6860.

    Article  Google Scholar 

  • Kagan, Y.Y. (1992) Correlations of earthquake focal mechanism. Geophys. Jour. Internat., v.110, pp.305–320.

    Article  Google Scholar 

  • Kagan, Y.Y. and Jackson, D.D. (1991) Long-term earthquake clustering. Geophys. Jour. Internat., v.104, pp. 117–133.

    Article  Google Scholar 

  • Kagan, Y.Y. (1994) Observational evidence for earthquakes as a nonlinear dynamic process. Physica D, v.77, pp.160–192.

    Article  Google Scholar 

  • Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bundec, E., Havlind, S., Bundea, A. and Stanleyb, H.E. (2002) Multifractal detrended fluctuation analysis of nonstationary time sequence. Physica A, v.316, pp.87–114.

    Article  Google Scholar 

  • Kisslinger, C. (1996) Aftershocks and fault-zone properties. Adv. ai]Geophys., v.38, pp.1–36.

    Article  Google Scholar 

  • Lei, X.L. (2003) How do asperities fracture? An experimental study of unbroken asperities. Earth Planet. Sci. Lett., v.213, pp.347–359.

    Article  Google Scholar 

  • Li, L., Chen, Q.F., Cheng, X. and Niu, F.L. (2007) Spatial clustering and repeating of seismic events observed along the 1976 Tangshan fault, north China. Geophys. Res. Lett., v.34, pp.L23309.

    Google Scholar 

  • Liu, Z.H., Xu, J.H., Chen, Z.S, Qie, Q. and Wei, C.M. (2014a) Multifractal and long memory of humidity process in the Tarim River Basin. Stoch. Environ. Res. Risk. Assess., v.28, pp.1383–1400.

    Article  Google Scholar 

  • Liu, Z.H., Xu, J.H. and Shi, K. (2014b) Self-organized criticality of climate change. Theory Appld. Climatol., v.115, pp.685–691.

    Article  Google Scholar 

  • Matsoukas, C., Islam, S. and Rodriguez-Iturbe, I. (2000) Detrended fluctuation analysis of rainfall and streamflow time series. Jour. Geophys. Res., v.105, pp.29165–29172.

    Article  Google Scholar 

  • Nanjo, K., Nagahama, H. and Satomura, M. (1998) Rates of aftershock decay and the fractal structure of active fault systems. Tectonophysics, v.287, pp.173–186.

    Article  Google Scholar 

  • Rodney, J.B. (1972) Partition function of the eight-vertex lattice model. Annals of Physics, v.70, pp.193–228.

    Article  Google Scholar 

  • Shi, K., Liu, C.Q., Ai, N.S. and Zhang, X.H. (2008) Using three methods to investigate time-scaling properties in air pollution indexes time series. Nonlin. Anal.: Real World Appl., v.9, pp.693–707.

    Article  Google Scholar 

  • Shi, K., Liu, C.Q., Huang, Z. W., Zhang, B. and Su, Y. (2010) Comparative analysis of time-scaling properties about water pH in Poyang Lake inlet and outlet on the basis of fractal methods. Wat. Sci. Tech., v.61, pp. 2113–2118.

    Article  Google Scholar 

  • Smalley, R. F., Chatelain, J.L., Turcotte, D.L. and Prevot, R. (1987) A fractal approach to the clustering of earthquakes: applications to the seismicity of the New Hebrides. Bull. Seism. Soc. Am., v.77, pp.1368–1381.

    Google Scholar 

  • Sornette, A. and Sornette, D. (1989) Self-organized criticality and earthquakes. Europhys. Lett., v.9, pp.197–202.

    Article  Google Scholar 

  • Sornette, A., Dubois, J., Cheminée, J.L. and Sornette, D. (1991) Are sequence of volcanic eruptions deterministically chaotic? Jour. Geophys. Res., v.96, pp.11931–11945.

    Article  Google Scholar 

  • Sornette, D., Davy, P. and Sornette, A. (1990) Structuration of the lithosphere in plate tectonics as a self-organized critical phenomena. Jour. Geophys. Res., v.95, pp.17353–17361.

    Article  Google Scholar 

  • Telesca, L., Lapenna, V. and Alexis, N. (2004) Multiresolution wavelet analysis of earthquakes. Chaos, Solitons and Fractals, v.22, pp.741–748.

    Article  Google Scholar 

  • Thanassoulas, C. (2008) The seismogenic area in the lithosphere considered as an “Open Physical System”. Its implications on some seismological aspects. Part-II. Maximum expected magnitude determination. ar**v:0807.0897 [physics. geo-ph].

    Google Scholar 

  • Tselentis, G. (1997) Contemporary seismology. Seismic Energy, v.2, pp.511–514.

    Google Scholar 

  • Turcotte, D.L. (1990) Fractal and Chaos in Geology and Geophysics. Cambridge University Press. pp.221.

    Google Scholar 

  • Vandewalle, N., Ausloos, M. and Boveroux, P.H. (1999) Applications of statistical physics to economic and financial topics. Physica A, v.269, pp.170–176.

    Article  Google Scholar 

  • Yang, X.S., Du, S.M. and Ma, J. (2004) Do earthquakes exhibit self-organized criticality? Phys. Rev. Lett., v.92, pp.228501–228504.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Daohong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daohong, L., Qiang, X. Analysis of time-scaling behaviour in the sequence of aftershocks of the Wenchuan earthquake, China. J Geol Soc India 84, 361–369 (2014). https://doi.org/10.1007/s12594-014-0140-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-014-0140-0

Keywords

Navigation