Log in

Applicability of delay tolerant networking to distributed satellite systems

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Currently, a trend towards distributed small satellite missions is emerging using cooperating satellites to achieve joint mission objectives, e.g. for earth observation. Communication is a key feature when cooperation between satellites is desired. Typically those satellite networks are affected by slow data rates, high packet loss and intermittent connectivity. To address these challenges the store-and-forward approach of the delay tolerant networking (DTN) concept is investigated in this article. Network simulations of typical scenarios were carried out and evaluated to derive statements about the applicability of the DTN approach to networks in low earth orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://www.dtnrg.org/.

  2. http://sourceforge.net/projects/ion-dtn/.

  3. http://trac.ibr.cs.tu-bs.de/project-cm-2012-ibrdtn.

  4. https://www.nsnam.org/.

  5. https://linuxcontainers.org/lxc/.

References

  1. Schmidt, M., Zeiger, F.: Design and implementation of in orbit experiments for the pico satellite UWE-1. In: International Astronautical Congress, IAC-06-E2, 1 July 2006 (2006)

  2. Busch, S., Bangert, P., Schilling, K.: Attitude control demonstration for pico-satellite formation flying by UWE-3. In: 4S Symposium (2014)

  3. Bangert, P., Busch, S., Schilling, K.: Performance characteristics of the UWE-3 miniature attitude determination and control system. In: Proceedings of the 2nd IAA Conference on Dynamics and Control of Space Systems, Roma (2014)

  4. Schilling, K.J.: Preparing technologies for cooperating pico-satellite networks: the UWE-3 and -4 misions. In: Proceedings of the IAA International Workshop on Constellations and Formation Flying, Lisbon, IWSCFF-2013-01-06 (2013)

  5. Munakata, R., et al.: CubeSat Design Specification. The CubeSat Program. California Polytechnic State University, San Luis Obispo (2015)

    Google Scholar 

  6. Bandyopadhyay, S., Subramanian, G.P., Foust, R., Morgan, D., Chung, S.J., Hadaegh, F.: A review of impending small satellite formation flying missions. In: Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee (2015)

  7. Schilling, K.: Networked distributed pico-satellite systems for earth observation an telecommunication applications. In: IFAC Workshop Aerospace Guidance, Navigation and Flight Control Systems, Samara (2009)

  8. Persson, S., Bodin, P., Gill, E., Harr, J., Jörgensen, J.: PRISMA—an autonomous formation flying mission. In: ESA Small Satellite Systems and Services Symposium (4S), Sardinia, pp. 25–29 (2006)

  9. Bonin, G., Roth, N., Armitage, S., Newman, J., Risi, B., Zee, R.E.: CanX-4 and CanX-5 precision formation flight: mission accomplished! In: 29th Conference on Small Satellites (2015). http://digitalcommons.usu.edu/smallsat/2015/all2015/3/

  10. Thoemel, J., Singarayar, F., Scholz, T., Masutti, D., Testani, P., Asma, C., Reinhard, R., Muylaert, J.: Status of the QB50 cubesat constellation mission. In: Proceedings of the 65th International Astronautical Congress, Toronto (2014)

  11. D’errico, M.: Distributed Space Missions for Earth System Monitoring. Springer, New York (2013)

  12. Zaksek, K., Gerst, A., von der Lieth, J., Ganci, G., Hort, M.: Cloud photogrammetry from space. Int. Archiv. Photogr. Remote Sens.Spat. Inf. Sci. 40(7), 247 (2015)

    Article  Google Scholar 

  13. Budianu, A.: OLFAR: adaptive topology for satellite swarms. In: International Astronautical Congress 2011 (2011)

  14. Schilling, K., Bangert, P., Busch, S., Dombrovski, S., Freimann, A., Kleinschrodt, A., Kramer, A., Nogueira, T., Ris, D., Scharnagl, J., Tzschichholz, T., Islas, G., Zhou, L.: Netsat: a four pico/nano-satellite mission for demonstration of autonomous formation flying. In: 66th International Astronautical Congress (2015)

  15. Kleinschrodt, A., Freimann, A., Schmidt, M., Schilling, K.: Lessons learned from in orbit operations of the UWE-3 pico-satellite. In: 66th International Astronmautical Congress, Jerusalem (2015)

  16. Muri, P., Mcnair, J.: A survey of communication sub-systems for intersatellite linked systems and CubeSat missions. J. Commun. 7(4), 290–308 (2012)

    Article  Google Scholar 

  17. Fall, K.: A delay-tolerant network architecture for challenged internets. In: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 27–34 (2003). doi:10.1145/863955.863960

  18. Burleigh, S.C., Birrane, E.J.: Toward a communications satellite network for humanitarian relief. In: Proceedings of the 1st International Conference on Wireless Technologies for Humanitarian Relief, pp. 219–224. ACM, New York (2011)

  19. Warthman, F., et al.: Delay- and disruption-tolerant networks (DTNS) a tutorial. Interplanetary Internet Special Interest Group (2015)

  20. Ivancic, W., Eddy, W.M., Stewart, D., Wood, L., Northam, J., Jackson, C.: Experience with delay-tolerant networking from orbit. Int. J. Satell. Commun. Netw. 28(5–6), 335–351 (2010). doi:10.1109/ASMS.2008.37

  21. Wyatt, J., Burleigh, S., Jones, R., Torgerson, L., Wissler, S.: Disruption tolerant networking flight validation experiment on NASA’s EPOXI mission. In: First International Conference on Advances in Satellite and Space Communications, 2009, SPACOMM 2009, pp. 187–196. IEEE, New York (2009)

  22. Jenkins, A., Kuzminsky, S., Gifford, K.K., Pitts, R.L., Nichols, K.: Delay/disruption-tolerant networking: flight test results from the international space station. In: 2010 IEEE Aerospace Conference, pp. 1–8. IEEE, New York (2010)

  23. Wood, L., Eddy, W.M., Holliday, P.: A bundle of problems. In: 2009 IEEE Aerospace Conference, pp. 1–17. IEEE, New York (2009). doi:10.1109/AERO.2009.4839384

  24. Vallado, D.A., Crawford, P.: SGP4 orbit determination. In: Proceedings of AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pp. 18–21 (2008)

  25. Knoblock, E.J., Wallett, T.M., Konangi, V.K., Bhasin, K.B.: Network configuration analysis for formation flying satellites. In: 2001 IEEE Proceedings on Aerospace Conference, vol. 2, pp. 2–991. IEEE, New York (2001)

  26. Megla, E.C., Konangi, V.K., Wallett, T.M., Bhasin, K.B.: Comparison of IEEE 802.11 and wireless 1394 for intersatellite links in formation flying. In: 2002 IEEE Aerospace Conference Proceedings, vol. 3, pp. 3–1077. IEEE, New York (2002)

  27. Vladimirova, T., Sidibeh, K.: WLAN for earth observation satellite formations in LEO. In: ECSIS Symposium on Bio-Inspired Learning and Intelligent Systems for Security, 2008, BLISS’08, pp. 119–124. IEEE, New York (2008)

Download references

Acknowledgments

Main parts of the investigations were performed in the course of the BayKoSM project, funded by the Bavarian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Freimann.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 22–24, 2015, Rostock, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freimann, A., Tzschichholz, T., Schmidt, M. et al. Applicability of delay tolerant networking to distributed satellite systems. CEAS Space J 8, 323–332 (2016). https://doi.org/10.1007/s12567-016-0127-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-016-0127-3

Keywords

Navigation