Log in

Optimum dietary proportion of soybean meal with fish meal, and its effects on growth, digestibility, and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicus

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The current study aimed to determine the effects of dietary proportions of soybean meal (SM) with fish meal (FM) on growth performance, digestibility, and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicus. Diets with six different proportions of SM with FM (0/100, 20/80, 40/60, 60/40, 80/20, and 100/0) were fed to sea cucumbers (1.00 ± 0.01 g) for 80 days. With dietary SM proportions under 60 %, body weight gain and protein efficiency ratios first increased and subsequently decreased. Feed conversion ratios for diets with 60 % SM decreased initially and then maintained a minimum value. Sea cucumbers fed a diet containing 40 % SM showed significantly (P < 0.05) higher digestibility than those with other treatments, and showed significantly (P < 0.05) higher protease activity than sea cucumbers fed diets containing 0 and 20 % SM. Based on growth performance, we can conclude that the optimum dietary proportion of SM with FM for juvenile sea cucumbers is 60/40.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fisheries Department of Agriculture Ministry of China (2012) Chinese Fishery Statistical Yearbook. Agriculture Press of China, Bei**g (in Chinese)

    Google Scholar 

  2. Zhang BL, Sun DY, Wu YQ (1995) Preliminary analysis on the feeding habit of Apostichopus japonicus in the rocky coast waters off Lingshan Island. Mar Sci 3:11–13 (in Chinese with English abstract)

    Google Scholar 

  3. Jiang SH, Dong SL, Gao QF, Wang F, Tian XL (2013) Comparative study on nutrient composition and growth of green and red sea cucumber, Apostichopus japonicus (Selenka, 1867), under the same culture conditions. Aquac Res 44:317–320

    Article  CAS  Google Scholar 

  4. Sun ZL, Gao QF, Dong SL, Shin PKS, Wang F (2013) Seasonal changes in food uptake by the sea cucumber Apostichopus japonicus in a farm pond: evidence from C and N stable isotopes. J Ocean Univ China 12:160–168

    Article  Google Scholar 

  5. Yokoyama H (2013) Growth and food source of the sea cucumber Apostichopus japonicus cultured below fish cages—Potential for integrated multi-trophic aquaculture. Aquaculture 372–375:28–38

    Article  Google Scholar 

  6. Lovell RT (1989) Nutrition and feeding of fish. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  7. Ngandzali BO, Zhou F, **ong W, Shao QJ, Xu JZ (2011) Effect of dietary replacement of fish meal by soybean protein concentrate on growth performance and phosphorus discharging of juvenile black sea bream, Acanthopagrus schlegelii. Aquac Nutr 17:526–535

    Article  CAS  Google Scholar 

  8. Zhu W, Mai KS, Zhang BG, Wang FZ, Xu GY (2005) Study on dietary protein and lipid requirement for sea cucumber, Stichopus japonicus. Mar Sci 29:54–58 (in Chinese with English abstract)

    CAS  Google Scholar 

  9. Seo JY, Lee SM (2011) Optimum dietary protein and lipid levels for growth of juvenile sea cucumber Apostichopus japonicus. Aquac Nutr 17:56–61

    Article  Google Scholar 

  10. Liao ML, Ren TJ, He LJ, Jiang ZQ, Han YZ (2014) Optimum dietary protein level for growth and coelomic fluid non-specific immune enzymes of sea cucumber Apostichopus japonicus juvenile. Aquac Nutr 20:443–450

    Article  CAS  Google Scholar 

  11. Wang JQ, Jiang XH, Zhao LJ, Su JW, Sun PH (2007) Effects of dietary protein sources on growth in juvenile sea cucumber (Apostichopus japonicus). Feed Rev 10:9–13 (in Chinese with English abstract)

    Google Scholar 

  12. Seo JY, Shin IS, Lee SM (2011) Effect of dietary inclusion of various plant ingredients as an alternative for Sargassum thunbergii on growth and body composition of juvenile sea cucumber Apostichopus japonicus. Aquac Nutr 17:549–556

    Article  CAS  Google Scholar 

  13. Seo JY, Shin IS, Lee SM (2011) Effect of various protein sources in formulated diets on the growth and body composition of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquac Res 42:623–627

    Article  CAS  Google Scholar 

  14. Francis G, Makkar HPS, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199:197–227

    Article  CAS  Google Scholar 

  15. Hardy RW (1999) Aquaculture’s rapid growth requirements for alternate protein sources. Feed Mgmt 50:25–28

    Google Scholar 

  16. Storebakken T, Shearer KD, Roem AJ (2000) Growth, uptake and retention of nitrogen and phosphorus, and absorption of other minerals in Atlantic salmon Salmo salar fed diets with fish meal and soy-protein concentrate as the main sources of protein. Aquac Nutr 6:103–108

    Article  CAS  Google Scholar 

  17. Ai QH, **e XJ (2005) Effects of replacement of fish meal by soybean meal and supplementation of methionine in fish meal/soybean meal-based diets on growth performance of the southern catfish Silurus meridionalis. J World Aquac Soc 36:498–507

    Article  Google Scholar 

  18. Kikuchi K (1999) Use of defatted soybean meal as a substitute for fish meal in diets of Japanese flounder Paralichthys olivaceus. Aquaculture 179:3–11

    Article  Google Scholar 

  19. Chou RL, Her BY, Su MS, Hwang G, Wu YH, Chen HY (2004) Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture 229:325–333

    Article  Google Scholar 

  20. Bakke–McKellep AM, Refstie S, Stefansson SO, Vanthanouvong V, Roomans G, Hemre GI, Krogdahl Å (2006) Effects of dietary soybean meal and photoperiod cycle on osmoregulation following seawater exposure in Atlantic salmon smolts. J Fish Biol 69:1396–1426

    Article  Google Scholar 

  21. Romarheim OH, Skrede A, Gao YL, Krogdahl Å, Denstadli V, Lilleeng E, Storebakken T (2006) Comparison of white flakes and toasted soybean meal partly replacing fish meal as protein source in extruded feed for rainbow trout (Oncorhynchus mykiss). Aquaculture 256:354–364

    Article  CAS  Google Scholar 

  22. Hernández MD, Martínez FJ, Jover M, García García B (2007) Effects of partial replacement of fish meal by soybean meal in sharpsnout seabream (Diplodus puntazzo) diet. Aquaculture 263:159–167

    Article  Google Scholar 

  23. Li Y, Ai QH, Mai KS, Xu W, Cheng ZY (2012) Effects of the partial substitution of dietary fish meal by two types of soybean meals on the growth performance of juvenile Japanese seabass, Lateolabrax japonicus (Cuvier 1828). Aquac Res 43:458–466

    Article  CAS  Google Scholar 

  24. Liener IE (1994) Implications of antinutritional components in soybean foods. Crit Rev Food Sci Nutr 34:31–67

    Article  CAS  PubMed  Google Scholar 

  25. Olli JJ, Hjelmeland K, Krogdahl Å (1994) Soybean trypsin inhibitors in diets for Atlantic salmon (Salmo salar, L): effects on nutrient digestibilities and trypsin in pyloric caeca homogenate and intestinal content. Comp Biochem Physiol A Physiol 109:923–928

    Article  CAS  PubMed  Google Scholar 

  26. AOAC (1990) Official methods of analysis. In: Helric K (ed) Association of official analytical chemists. Association of analytical chemist Inc, Virginia, p 684

    Google Scholar 

  27. Austreng E (1978) Digestibility determination in fish using chromic oxide marking and analysis of contents from different segments of the gastrointestinal tract. Aquaculture 13:265–272

    Article  Google Scholar 

  28. Cho C, Slinger S (1979) Apparent digestibility measurement in feedstuff for rainbow trout. In: Halver JE, Tiews K (eds) Finfish nutrition and fishfeed technology, vol II. Heeneman, Berlin, pp 239–248

    Google Scholar 

  29. Glencross B, Evans D, Dods K, McCafferty P, Hawkins W, Maas R, Sipsas S (2005) Evaluation of the digestible value of lupin and soybean protein concentrates and isolates when fed to rainbow trout Oncorhynchus mykiss, using either strip** or settlement faecal collection methods. Aquaculture 245:211–220

    Article  CAS  Google Scholar 

  30. Liu Y, Dong SL, Tian XL, Wang F, Gao Q (2010) The effect of different macroalgae on the growth of sea cucumbers (Apostichopus japonicus Selenka). Aquac Res 41:e881–e885

    Article  Google Scholar 

  31. Mou SD, Li YS, Liu G, Wang Y (2000) The current situation of hatching, rearing and propagation technology of sea cucumber (Apostichopus japonicus) in Shandong province. Trans Oceanol Limnol 2:63–65 (in Chinese with English abstract)

    Google Scholar 

  32. Zhou Y, Yang H, Liu S, Yuan X, Mao Y, Liu Y, Xu X, Zhang F (2006) Feeding and growth on bivalve biodeposits by the deposit feeder Stichopus japonicus Selenka (Echinodermata: Holothuroidea) co-cultured in lantern nets. Aquaculture 256:510–520

    Article  Google Scholar 

  33. Yuan CY (2005) Current status and development of feed in sea cucumber. Fish Sci 24:54–56 (in Chinese with English abstract)

    Google Scholar 

  34. Amirkolaie AK, Leenhouwers JI, Verreth JAJ, Schrama JW (2005) Type of dietary fibre (soluble versus insoluble) influences digestion, faeces characteristics and faecal waste production in Nile tilapia (Oreochromis niloticus L.). Aquac Res 36:1157–1166

    Article  CAS  Google Scholar 

  35. Dias J, Huelvan C, Dinis TM, Metailler R (1998) Influence of dietary bulk agents (silica, cellulose and a natural zeolite) on protein digestibility, growth, feed intake and feed transit time in European seabass (Dicentrarchus labrax) juveniles. Aquat Living Res 11:219–226

    Article  Google Scholar 

  36. González–Peña M del C, Anderson AJ, Smith DM, Moreira GS (2002) Effect of dietary cellulose on digestion in the prawn Macrobrachium rosenbergii. Aquaculture 211:291–303

    Article  Google Scholar 

  37. Kraugeruda OF, Penna M, Storebakkena T, Refstiea S, Krogdahla Å, Svihus B (2007) Nutrient digestibilities and gut function in Atlantic salmon (Salmo salar) fed diets with cellulose or non-starch polysaccharides from soy. Aquaculture 273:96–107

    Article  Google Scholar 

  38. Dong Y, Dong S, Ji T (2008) Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus Selenka. Aquaculture 275:329–334

    Article  Google Scholar 

  39. Wootton RJ, Allen JRM, Cole SJ (1980) Effect of body weight and temperature on the maximum daily food consumption of Gasterosteus aculeatus L. and Phoxinus phoxinus (L.): selecting an appropriate model. J Fish Biol 17:695–705

    Article  Google Scholar 

  40. Yang H, Yuan X, Zhou Y, Mao Y, Zhang T, Liu Y (2005) Effects of body size and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation. Aquac Res 36:1085–1092

    Article  Google Scholar 

  41. An Z, Dong Y, Dong S (2007) Temperature effects on growth-ration relationships of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture 272:644–648

    Article  Google Scholar 

  42. Chen J (2004) Present status and prospects of sea cucumber industry in China. In: Lovatelli A (ed) Advances in sea cucumber aquaculture and management. FAO, Rome, pp 25–38

    Google Scholar 

  43. Dong Y, Dong S, Tian X, Wang F, Zhang M (2006) Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture 255:514–521

    Article  Google Scholar 

  44. Boonyaratpalin M, Suraneiranat P, Tunpibal T (1998) Replacement of fish meal with various types of soybean products in diets for the Asian seabass, Lates calcarifer. Aguaculture 161:67–68

    CAS  Google Scholar 

  45. Davis SJ, Thomas N, Basteson RL (1989) The nutritional value of a processed soya protein concentration in diets for tilapia fry (Oreochromis mosambjcus, Peters). Israeli J Aquac 41:3–11

    Google Scholar 

  46. Tacon AGJ, Hasaster JV, Featherstone PK, Kerr K, Jackson AJ (1983) Studies on the utilization of full-fat soybean and solvent extracted soybean meal in a complete diet for rainbow trout. Nippon Suisan Gakkaishi 49:1437–1443

    Article  CAS  Google Scholar 

  47. Storebakken T, Kvien IS, Shearer KD, Grisdale-Helland B, Helland SJ, Berge GM (1998) The apparent digestibility of diets containing fish meal, soybean meal or bacterial meal fed to Atlantic salmon (Salmo salar): evaluation of different faecal collection methods. Aquaculture 169:195–210

    Article  Google Scholar 

  48. Elangovan A, Shim KF (2000) The influence of replacing fish meal partially in the diet with soybean meal on growth and body composition of juvenile tin foil barb (Barbodes altus). Aquaculture 189:133–144

    Article  Google Scholar 

  49. Stickney RR, Hardy RW, Koch K, Harrold R, Seawright D, Massee KC (1996) The effects of substituting selected oilseed protein concentrates for fish meal in rainbow trout Oncorhynchus mykiss diets. J World Aquac Soc 27:57–63

    Article  Google Scholar 

  50. Médale F, Boujard T, Vallée F, Blanc D, Mambrini M, Roem A, Kaushik SJ (1998) Voluntary feed intake, nitrogen and phosphorus losses in rainbow trout (Oncorhynchus mykiss) fed increasing dietary levels of soy protein concentrate. Aquat Living Res 11:239–246

    Article  Google Scholar 

  51. Kim YK (1974) Determination of true digestibility of dietary proteins in carp with Cr2O3 containing-diet. Nippon Suisan Gakkaishi 40:651–653

    Article  CAS  Google Scholar 

  52. Anderson JS, Lall SP, Anderson DM, Chandrasoma J (1992) Apparent and true availability of amino acids from common feed ingredients for Atlantic salmon (Salmo salar) reared in sea water. Aquaculture 108:111–124

    Article  CAS  Google Scholar 

  53. Robaina L, Izquierdo MS, Moyano FJ, Socorro J, Vergara JM, Montero D, Fernandez-Palacios H (1995) Soybean and lupin seed meals as protein sources in diets for gilthead seabream (Sparus aurata): nutritional and histological implications. Aquaculture 130:219–233

    Article  Google Scholar 

  54. Pongmaneerat J, Watanabe T (1993) Effect of extrusion processing on the utilization of soybean meal diets for rainbow trout. Nippon Suisan Gakkaishi 59:1407–1414

    Article  Google Scholar 

  55. Olli JJ, Krogdahi Å (1994) Nutritive value of four soybean products as protein sources in diets for rainbow trout (Oncorhynchus mykiss, Walbaum) reared in fresh water. Acta Agric Scand A Anim Sci 44:185–192

    Google Scholar 

  56. Rumsey GL, Siwicki AK, Anderson DP, Bowser PR (1994) Effect of soybean protein on serological response, non-specific defense mechanisms, growth, and protein utilization in rainbow trout. Vet Immunol Immunopathol 41:323–339

    Article  CAS  PubMed  Google Scholar 

  57. Mambrini M, Roem AJ, Carvedi JP, Lalles JP, Kaushik SJ (1999) Effects of replacing fish meal with soy protein concentrate and of dl-methionine supplementation in high-energy, extruded diets on the growth and nutrient utilization of rainbow trout, Oncorhynchus mykiss. J Anim Sci 77:2990–2999

    CAS  PubMed  Google Scholar 

  58. Kissil GW, Lupatsch I, Higgs DA, Hardy RW (2000) Dietary substitution of soy and rapeseed protein concentrates for fish meal, and their effects on growth and nutrient utilization in gilthead seabream Sparus aurata L. Aquac Res 31:595–601

    Article  Google Scholar 

  59. Gallagher ML (1994) The use of soybean meal as a replacement for fish meal in diets for hybrid striped bass (Morone saxatilis × M. chrysops). Aquaculture 126:119–127

    Article  Google Scholar 

  60. McGoogan BB, Gatlin DM (1997) Effects of replacing fish meal with soybean meal in diets for red drum Sciaenops ocellatus and potential for palatability enhancement. J World Aquac Soc 28:374–385

    Article  Google Scholar 

  61. Baragi V, Lovell RT (1986) Digestive enzyme activities in striped bass from first feeding through larva development. Trans Am Fish Soc 115:478–484

    Article  CAS  Google Scholar 

  62. Pedersen BH, Nilssen EM, Hjelmeland K (1987) Variations in the content of trypsin and trysinogen in larval herring (Clupea harengus) digesting copepod nauplii. Mar Biol 94:171–181

    Article  CAS  Google Scholar 

  63. Das KM, Tripathi SD (1991) Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture 92:21–32

    Article  CAS  Google Scholar 

  64. Dimes LE, Garcia-Carreno FL, Haard NF (1994) Estimation of protein digestibility—III. Studies on the digestive enzymes from the pyloric ceca of rainbow trout and salmon. Comp Biochem Physiol A Physiol 109:349–360

    Article  Google Scholar 

  65. Alarcón FJ, García-Carreño FL, Navarrete del Toro MA (2001) Effect of plant protease inhibitors on digestive proteases in two fish species, Lutjanus argentiventris and L. novemfasciatus. Fish Physiol Biochem 24:179–189

    Article  Google Scholar 

  66. Zhou QC, Mai KS, Tan BP, Liu YJ (2005) Partial replacement of fishmeal by soybean meal in diets for juvenile cobia (Rachycentron canadum). Aquac Nutr 11:175–182

    Article  CAS  Google Scholar 

  67. Flavin DF (1982) The effects of soybean trypsin inhibitors on the pancreas of animals and man: a review. Vet Human Toxicol 24:25

    CAS  Google Scholar 

  68. Haard NF, Dimes LE, Arndt RE, Dong FM (1996) Estimation of protein digestibility—IV. Digestive proteinases from the pyloric caeca of coho salmon (Oncorhynchus kisutch) fed diets containing soybean meal. Comp Biochem Physiol B: Biochem Mol Biol 115:533–540

    Article  Google Scholar 

  69. Krogdahl Å, Lea TB, Olli JJ (1994) Soybean proteinase inhibitors affect intestinal trypsin activities and amino acid digestibilities in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Physiol 107:215–219

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Public Science and Technology Research Fund Project of Ocean of the State Oceanic Administration of the People’s Republic of China (Grant No. 201405003) and the Science and Technology Research Fund Project of the Dalian City Oceanic and Fishery Administration, Liaoning Province, China (Grant No. 20140101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongjun Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, M., Ren, T., He, L. et al. Optimum dietary proportion of soybean meal with fish meal, and its effects on growth, digestibility, and digestive enzyme activity of juvenile sea cucumber Apostichopus japonicus . Fish Sci 81, 915–922 (2015). https://doi.org/10.1007/s12562-015-0916-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-015-0916-1

Keywords

Navigation